Solid state light with solar shielded heatsink

Illumination – Housing – With cooling means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C362S290000, C362S292000, C362S294000, C362S800000

Reexamination Certificate

active

06527422

ABSTRACT:

CROSS REFERENCE TO RELATED APPLICATIONS
Cross reference is made to commonly assigned co-pending patent application entitled “Solid State Light Apparatus” filed herewith, the teachings of which are incorporated herein by reference.
FIELD OF THE INVENTION
The present invention is generally related to light sources, and more particularly to traffic signal lights including those incorporating both incandescent and solid state light sources.
BACKGROUND OF THE INVENTION
Traffic signal lights have been around for years and are used to efficiently control traffic through intersections. While traffic signals have been around for years, improvements continue to be made in the areas of traffic signal light control algorithms, traffic volume detection, and emergency vehicle detection.
There continues to be a need to be able to predict when a traffic signal light source will fail. The safety issues of an unreliable traffic signal are obvious. The primary failure mechanism of an incandescent light source is an abrupt termination of the light output caused by filament breakage. The primary failure mechanism of a solid state light source is gradual decreasing of light output over time, and then ultimately, no light output.
The current state of the art for solid state light sources is as direct replacements for incandescent light sources. The life time of traditional solid state light sources is far longer than incandescent light sources, currently having a useful operational life of 10-100 times that of traditional incandescent light sources. This additional life time helps compensate for the additional cost associated with solid state light sources.
However, solid state light sources are still traditionally used in the same way as incandescent light sources, that is, continuing to operate the solid state light source until the light output is insufficient or non existent, and then replacing the light source. The light output is traditionally measured by a person with a light meter, measuring the light output from the solid state light source from a Department of Transportation (DOT) “bucket”.
Other problems with traditional traffic signal light sources is the intense heat generated by the light source. In particular, temperature greatly affects the life time of solid state light sources. If the temperature can be reduced, the operational life of the solid state light source may increase between 3 fold and 10 fold. Traditionally, solid state light sources today are designed as individual light emitting diodes (LEDs) individually mounted to a printed circuit board (PCB), and placed in a protective enclosure. This protective enclosure produces a large amount of heat and has severe heat dissipation problems, thereby reducing the life of the solid state light source dramatically.
In addition to temperature, oxidation also greatly effects the lifetime of solid state light sources. For instance, when oxygen is allowed to combine with aluminum on an aluminum gallium arsenide phosphorus (AlInGaP) LED, oxidation will occur and the light output is significantly reduced.
With specific regards to solid state light sources, typical solid state light sources comprised of LEDs are traditionally too bright early in their life, and yet not bright enough in their later stages of life. Traditional solid state light sources used in traffic control signals are traditionally over driven initially so that when the light reduces later, the light output is still at a proper level meeting DOT requirements. However, this overdrive significantly reduces the life of the LED device due to the increased, and unnecessary, drive power and associated heat of the device during the early term of use. Thus, not only is the cost for operating the signal increased, but more importantly, the overall life of the device is significantly reduced by overdriving the solid state light source during the initial term of operation.
Still another problem with traditional light sources for traffic signals is detection of the light output using the traditional hand held meter. Ambient light greatly affects the accurate detection of light output from the light source. Therefore, it has been difficult in the past to precisely set the light output to a level that meets DOT standards, but which light source is not over driven to the point of providing more light than necessary, which as previously mentioned, increases temperature and degrades the useful life of the solid state device.
Still another problem in prior art traffic signals is that signal visibility needs to be controlled so only specific lanes of traffic are able to see the traffic light. An example is when a left turn lane has a green light, and an adjacent lane is designated as a straight lane. It is necessary for traffic in the left turn lane to see the green light. The current visibility control mechanism is mechanical, typically implementing a set of baffles inserted into the light system to carefully point the light in the left lane in the correct direction. The mechanical direction system is not very controllable because it is controlled in only one dimension, typically either up or down, or, either right or left, but not both. Consequently, the light is undesirable often seen in the adjacent lane. There is arisen a need for a better method to control the visibility range of a traffic signal.
Traditionally, old technology is typically replaced with new technology by simply disposing of the old technology traffic devices. Since most cities don't have the budget to replace all traffic control devices when new ones come to market, they have traditionally taken the position of replacing only a portion of the cities devices at any given time, thereby increasing the inventory needed for the city. Larger cities end up inventorying between four and five different manufacture's traffic signals, some of which are not in production any longer. The added cost is not only for storage of inventoried items, but also the overhead of taking all different types of equipment to a repair site, or cataloging the different inventoried items at different locations.
With respect to alignment systems for traffic lights, traditionally alignment traffic control devices provide that one person points the generated light beam in the desired direction from a bucket while above the intersection, while another person stands in the traffic lanes to determine if the light is aligned properly. The person on the ground has to move over the entire field of view to check the light alignment. If the light is masked off (such as a turn arrow), there are more alignment iterations. There is desired a faster and more reliable method of aligning traffic signals.
Traffic lights also have a problem during darker conditions, i.e. at night or at dusk when the light is not well defined. This causes a problem if the light has to be masked off for any reason, whereby light may overlap to areas that should be off. This imprecise on/off boundary is called “ghosting”. There is a need to find an improved way to define the light/dark boundary of the traffic light to reduce ghosting. The ghosting is primarily caused by the angle the light hits on the “risers” on a Fresnel lens. A traffic light with a longer focal length reduces the angle, therefore decreasing the amount of ghosting. Therefore, devices with shorter focal lengths have increased ghosting. Another cause of ghosting is stray light from arrays of LED lights. Typical LED designs have a rather large intensity peek, that is, a less uniform beam of light being generated from the array.
SUMMARY OF THE INVENTION
The present invention achieves many technical advantages including an extended operating lifetime as an improved traffic control signal having a solar shielded external heatsink allowing ambient airflow to cool the heatsink and LEDs mounted thereto. The solar shielded external heatsink significantly reduces the LED die temperatures, especially when the signal faces west into a setting sun late in the afternoon.
The solid state light source has many other advant

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Solid state light with solar shielded heatsink does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Solid state light with solar shielded heatsink, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Solid state light with solar shielded heatsink will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3040456

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.