Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems
Reexamination Certificate
2000-11-09
2003-04-15
Getzow, Scott M. (Department: 3762)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical therapeutic systems
Reexamination Certificate
active
06549807
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to electronic components for implantable medical devices, and more particularly implantable cardioverter/defibrillators having rechargeable fast charging batteries.
BACKGROUND OF THE INVENTION
Implantable Cardioverter Defibrillators (ICDs) are implanted in patients susceptible to cardiac tachyarrhythmias including atrial and ventricular tachycardias and atrial and ventricular fibrillation. Such devices typically provide cardioversion or defibrillation by delivering low voltage pacing pulses or high voltage shocks to the patient's heart, typically about 500-800V. The ICD operates by detecting a fast heart rate or tachyarrhythmia, upon which a battery within the device housing is coupled via an inverter to a high voltage capacitor or capacitor pair to charge the capacitors. When the capacitor reaches a desired voltage, charging is stopped and the capacitors are discharged under control of a microprocessor to provide a therapeutic shock to the patient's heart.
While transcutaneous rechargeable battery systems have been contemplated, for example as provided in U.S. Pat. No. 5,991,665 to Wang et al., such a system has never been implemented in an ICD because of the lack of an acceptable battery recharging system. Therefore, it is generally expected that the battery must store all the energy needed for continuous monitoring and analysis of sensed electrogram and other physiologic signals, for telemetric communications and for potentially numerous shocks over the life of the device, and must retain the energy with minimal leakage to provide a long service life of at least several years, even if not frequently employed for shocks during its life. Thus, the energy storage capacity of the battery is important.
In addition, a battery must be capable of high current rates needed to charge the high voltage capacitors in a short time, so that a therapeutic shock may be delivered within a short time interval after the device has detected and diagnosed a need for the shock. If the battery has an excessive internal resistance, the current flow rate will be limited, delaying capacitor charging. This may result in syncope, ischemia (oxygen starvation) of critical organs and tissues. As a general principle, the sooner the therapy can be delivered following a detected episode, the better prospects are for the patient's health. In addition, it is believed that therapy delivered more promptly requires a lower energy therapy, allowing the conservation of the battery's energy to extend the device life before replacement is required.
Also, an omnipresent concern with implantable devices is device volume. A small device permits more flexibility in implant location, and provides improved patient comfort. There is generally a trade-off between size and storage capacity, with larger batteries providing more capacity. To mitigate this trade-off, batteries with high energy density (watt-hours per unit volume) are desired.
However, there is a trade-off between energy density and the current flow rate discussed above. The highest density cells, such as Mercury-zinc and Silver-zinc types are suited to applications where a moderate current draw occurs, but these have a high internal resistance that prevents them from providing the high current flow rate needed for rapid capacitor charging.
Thus, ICD designers have adopted low internal resistance battery chemistries such as Lithium Silver Vanadium Oxide (SVO), using one or more such cells. These provide the required rapid capacitor charging, but at the cost of somewhat compromised energy density. In addition, SVO and comparable performance batteries are expensive compared to other battery chemistries that lack only the needed current output. Also, over the life of existing devices, as SVO battery voltage diminishes, the time interval between diagnosis of an arrhythmia and completion of capacitor charging increases, so that the effective device life is limited due to the concerns noted above about delayed treatment.
In the past, certain implantable defibrillators were designed to reduce the demand on the battery used for critical, high current charging duties by employing a separate second cell having higher energy density and lower current capacity. This high density cell serves device circuitry not requiring high current rates, reducing the depletion of the lower energy density cell devoted to capacitor charging. While this may permit a slightly extended life, or slightly reduced size, the benefits are limited, because the low current battery circuitry adds size, complexity, and introduces a parasitic current load that will tend to reduce longevity.
In certain rechargeable batteries, including SVO cells used in ICD devices, there remains an inherent concern that uncontrolled recharging can generate elongated dendrites as electrode surfaces are replated, and that in extreme circumstances, these metal dendrites can cause shorting. Shorting in a battery will tend to deplete it rapidly, prevent subsequent recharging, and render the device inoperable. This concern exists regardless of the energy source used for recharging a cell.
SUMMARY OF THE INVENTION
The disclosed embodiment overcomes the limitations of the prior art by providing an implantable cardiac device. The device has a pulse generator configured to generate electric shocks for delivery to a patient's heart. The device has an output capacitor, and connected charging circuitry. A first battery is switchably coupled to the charging circuitry, and has a high current flow rate to rapidly charge the capacitor. A second battery is switchably connected in parallel to the first battery, and is operable to recharge the first battery. A detector coupled to the charging circuitry detects when the recharging current is above a predetermined threshold indicative of abnormal recharging. A controller is programmed to enable the charging circuitry to produce the shocks, and to disable the second battery whenever an abnormal recharging current is detected. The controller may operate to connect the batteries on anti parallel whenever an abnormal recharging current is detected. The invention is also useful for general implantable medical devices, such as nerve or muscle stimulator or even hearing aids or heart pumps.
REFERENCES:
patent: 4082097 (1978-04-01), Mann et al.
patent: 5372605 (1994-12-01), Adams et al.
patent: 5466254 (1995-11-01), Helland
patent: 5814075 (1998-09-01), Kroll
patent: 5991665 (1999-11-01), Wang et al.
patent: 6047211 (2000-04-01), Swanson et al.
Getzow Scott M.
Pacesetter Inc.
LandOfFree
Implantable cardioverter defibrillator having a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Implantable cardioverter defibrillator having a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Implantable cardioverter defibrillator having a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3038407