Games using tangible projectile – Golf – Ball
Reexamination Certificate
2001-07-24
2003-05-27
Graham, Mark S. (Department: 3711)
Games using tangible projectile
Golf
Ball
Reexamination Certificate
active
06569035
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to golf balls comprising one or more layers and/or a core comprising one or more high molecular weight siloxane polymers exhibiting a viscosity of at least 1 million centistokes. In particular, the present invention relates to a golf ball comprising one or more cover layers having at least one high molecular weight siloxane polymer exhibiting a viscosity of at least 1 million centistokes.
BACKGROUND OF THE INVENTION
Spin rate is an important golf ball characteristic for both the skilled and unskilled golfer. High spin rates allow for the more skilled golfer, such as PGA professionals and low handicap players, to maximize control of the golf ball. This is particularly beneficial to the more skilled golfer when hitting an approach shot to a green. The ability to intentionally produce “back spin”, thereby stopping the ball quickly on the green, and/or “side spin” to draw or fade the ball, substantially improves the golfer's control over the ball. Thus, the more skilled golfer generally prefers a golf ball exhibiting high spin rate properties.
However, a high spin golf ball is not desired by all golfers, particularly high handicap players who cannot intentionally control the spin of the ball. In this regard, less skilled golfers have, among others, two substantial obstacles to improving their game: slicing and hooking. When a club head meets a ball, an unintentional side spin is often imparted which sends the ball off its intended course. The side spin reduces one's control over the ball as well as the distance the ball will travel. As a result, unwanted strokes are added to the game.
Consequently, while the more skilled golfer desires a high spin golf ball, a more efficient ball for the less skilled player is a golf ball that exhibits low spin properties. The low spin ball reduces slicing and hooking and enhances roll distance for the amateur golfer. The present inventors have addressed the need for developing a golf ball having a reduced spin rate after club impact, while at the same time maintaining durability, playability and resiliency characteristics needed for repeated use. The reduced spin rate golf ball of the present invention meets the rules and regulations established by the United States Golf Association (U.S.G.A.).
Along these lines, the U.S.G.A. has set forth five (5) specific regulations to which a golf ball must conform. The U.S.G.A. rules require that a ball be no smaller than 1.680 inches in diameter. However, notwithstanding this restriction, there is no specific limitation as to the maximum permissible diameter of a golf ball. As a result, a golf ball can be as large as desired so long as it is larger than 1.680 inches in diameter and so long as the other four (4) specific regulations are met.
The U.S.G.A. rules also require that balls weigh no more than 1.620 ounces, and that their initial velocity may not exceed 250 feet per second with a maximum tolerance of 2%, or up to 255 ft./sec. Further, the U.S.G.A. rules state that a ball may not travel a distance greater than 280 yards with a test tolerance of 6% when hit by the U.S.G.A. outdoor driving machine under specific conditions.
It has been determined by the present inventors that the combination of a relatively soft core (i.e. Riehle compression of about 75 (0.75) to about 160 (0.160)) and a hard cover (i.e. Shore D hardness of 65 or more) significantly reduces the overall spin rate of the resulting two piece golf ball. The inventors have also learned that an increase in cover thickness, thereby increasing the overall diameter of the resulting molded golf ball, further reduces spin rate.
Top-grade golf balls sold in the United States may be generally classified as one of two types: two-piece or three-piece (i.e. multi-piece) balls. The two-piece ball, exemplified by the balls sold by Spalding Sports Worldwide, Inc. (the assignee of the present invention) under the trademark TOP-FLITE®, consists of a solid polymeric core and a separately formed outer cover. Three-piece or multi-piece balls differ from two-piece balls by additional mantle and/or cover layers. Three-piece or multi-piece balls are sold under the trademark STRATA® by Spalding Sports Worldwide, Inc. Other types of three-piece balls are sold under the trademark TITLEIST® by the Acushnet Company, which consist of a liquid (e.g., TITLEIST TOUR 384®) or solid (e.g., TITLEIST DT®) center, elastomeric thread windings about the center, and a cover.
Spalding's two-piece golf balls are produced by molding a natural (balata) or synthetic (i.e. thermoplastic resin such as an ionomer resin) polymeric cover composition around a preformed polybutadiene (rubber) core. During the molding process, the desired dimple pattern is molded into the cover material. In order to reduce the number of coating steps involved in the finishing of the golf balls, a color pigment or dye and, in many instances, an optical brightener, are added directly to the generally “off white” colored polymeric cover composition prior to molding. By incorporating the pigment and/or optical brightener in the cover composition molded onto the golf ball core, this process eliminates the need for a supplemented pigmented painting step in order to produce a white or colored (notably orange, pink and yellow) golf ball.
With respect to multi-layered golf balls, Spalding is a leading manufacturer of two-piece golf balls. Spalding manufactures numerous different types of two-piece balls which vary distinctly in such properties as playability (i.e. spin rate, compression, feel, etc.), travel distance (initial velocity, C.O.R., etc.), durability (impact, cut and weather resistance) and appearance (i.e. whiteness, reflectance, yellowness, etc.) depending upon the ball's core, cover and coating materials, as well as the ball's surface configuration (i.e. dimple pattern). Consequently, Spalding's two-piece golf balls offer both the amateur and professional golfer a variety of performance characteristics to suit an individual's game.
In regard to the specific components of a golf ball, although the nature of the cover can, in certain instances, make a significant contribution to the overall feel, spin (control), coefficient of restitution (C.O.R.) and initial velocity of a ball (see, for example, U.S. Pat. No. 3,819,768 to Molitor), the initial velocity of two-piece and three-piece balls is determined mainly by the coefficient of restitution of the core. The coefficient of restitution of the core of wound (i.e. three-piece) balls can be controlled within limits by regulating the winding tension and the thread and center composition. With respect to two-piece piece balls, the coefficient of restitution of the core is a function of the properties of the elastomer composition from which it is made.
The cover component of a golf ball is particularly influential in affecting the compression (feel), spin rates (control), distance (C.O.R.), and durability (i.e. impact resistance, etc.) of the resulting ball. Various cover compositions have been developed by Spalding and others in order to optimize the desired properties of the resulting golf balls.
Over the last twenty (20) years, improvements in cover and core material Formulations and changes in dimple patterns have more or less continually improved golf ball distance. Top-grade golf balls, however, must meet several other important design criteria. To successfully compete in today's golf ball market, a golf ball should: be resistant to cutting; be finished well; hold a line in putting; and have good click and feel. In addition, the ball should exhibit spin and control properties dictated by the skill and experience of the end user.
Prior artisans have utilized a wide array of different materials in golf balls in an attempt to obtain improved properties and performance. Despite the great number of different materials and combinations of materials employed in prior art golf balls, there still remains a need for an improved golf ball exhibiting superior properties and pe
Binette Mark L.
Sullivan Michael J.
Gorden Raeann
Graham Mark S.
Spalding Sports Worldwide Inc.
LandOfFree
Golf ball comprising silicone material does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Golf ball comprising silicone material, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Golf ball comprising silicone material will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3034888