Techniques for hydraulic fracturing combining oriented...

Wells – Processes – Placing fluid into the formation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C166S297000

Reexamination Certificate

active

06508307

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field of the Invention
The present Invention relates to techniques for stimulating the production of oil and gas from a reservoir. In particular, the present Invention relates to specialized techniques of propped hydraulic fracturing, in which the perforations are shot in a plane aligned with the direction of probable fracture propagation, thereafter the fracturing treatment is performed using a low viscosity fluid.
2. Introduction to the Technology
The present Invention relates generally to hydrocarbon (petroleum and natural gas) production from wells drilled in the earth. Obviously, it is desirable to maximize both the rate of flow and the overall capacity of hydrocarbon from the subsurface formation to the surface, where it can be recovered. One set of techniques to do this is referred to as stimulation techniques, and one such technique, “hydraulic fracturing,” is the subject of the present Invention. The rate of flow, or “production” of hydrocarbon from a geologic formation is naturally dependent on numerous factors. One of these factors is the radius of the borehole; as the bore radius increases, the production rate increases, everything else being equal. Another, related to the first, is the flowpaths from the formation to the borehole available to the migrating hydrocarbon.
Drilling a hole in the subsurface is expensive—which limits the number of wells that can be economically drilled—and this expense only generally increases as the size of the hole increases. Additionally, a larger hole creates greater instability to the geologic formation, thus increasing the chances that the formation will shift around the wellbore and therefore damage the wellbore (and at worse collapse). So, while a larger borehole will, in theory, increase hydrocarbon production, it is impractical, and there is a significant downside. Yet, a fracture or large crack within the producing zone of the geologic formation, originating from and radiating out from the wellbore, can actually increase the “effective” (as opposed to “actual”) wellbore radius, thus, the well behaves (in terms of production rate) as if the entire wellbore radius were much larger.
Fracturing (generally speaking, there are two types, acid fracturing and propped fracturing, the latter is of primary interest here) thus refers to methods used to stimulate the production of fluids resident in the subsurface, e.g., oil, natural gas, and brines. Hydraulic fracturing involves literally breaking or fracturing a portion of the surrounding strata, by injecting a specialized fluid into the wellbore directed at the face of the geologic formation at pressures sufficient to initiate and extend a fracture in the formation. More particularly, a fluid is injected through a wellbore; the fluid exits through holes (perforations in the well casing lining the borehole) and is directed against the face of the formation (sometimes wells are completed openhole where no casing and therefore no perforations exist so the fluid is injected through the wellbore and directly to the formation face) at a pressure and flow rate sufficient to overcome the minimum in-situ rock stress (also known as minimum principal stress) and to initiate and/or extend a fracture(s) into the formation. Actually, what is created by this process is not always a single fracture, but a fracture zone, i.e., a zone having multiple fractures, or cracks in the formation, through which hydrocarbon can flow to the wellbore.
In practice, fracturing a well is a highly complex operation performed with precise and exquisite orchestration of equipment, highly skilled engineers and technicians, and powerful integrated computers monitoring rates, pressures, volumes, etc. During a typical fracturing job, large quantities of materials often in excess of a quarter of a million gallons of fluid, will be pumped at high pressures exceeding the minimum principal stress down a well to a location often thousands of feet below the surface.
Thus, once the well has been drilled, fractures are often deliberately introduced in the formation, as a means of stimulating production, by increasing the effective wellbore radius. Clearly then, the longer the fracture, the greater the effective wellbore radius. More precisely, wells that have been hydraulically fractured exhibit both radial flow around the wellbore (conventional) and linear flow from the hydrocarbon-bearing formation to the fracture, and further linear flow along the fracture to the wellbore. Therefore, hydraulic fracturing is a common means to stimulate hydrocarbon production in low permeability formations. In addition, fracturing has also been used to stimulate production in high permeability formations. Obviously, if fracturing is desirable in a particular instance, then it is also desirable, generally speaking, to create as large (i.e., long) a fracture zone as possible—e.g., a larger fracture means an enlarged flowpaths from the hydrocarbon migrating towards the wellbore and to the surface.
The Prior Art
The present Invention combines disparate technologies from the prior art, which when combined, produce unexpectedly superior results—as evidenced by results obtained in an actual field setting, which shall be discussed later.
The prior art upon which the present Invention is based is the general teaching of the shooting perforations oriented in the direction in which the fracture is most likely to propagate. This way, potentially large pressure drops caused by the tortuous flowpath that the fluid must take, are eliminated, in turn allowing the well operator to perform fracture treatments. (See, e.g., H. H. Abass, et al., Oriented Perforations: A Rock Mechanics View, SPE 28555 (1994); C. H. Yew and Y. Li, Fracturing of A Deviated Well, SPE 16930 (1987), both papers are hereby incorporated by reference in their entirety).
A second major area of prior art subsumed in the present Invention is low viscosity fracturing fluids. In particular, such low viscosity fracturing fluids include water and viscoelastic surfactant-based fracturing fluids. (See, e.g., U.S. Pat. No. 5,551,516, Hydraulic Fracturing Process and Compositions, assigned to Schlumberger). These unique viscoelastic surfactant-based fracturing fluids shall be described in more detail later.
SUMMARY OF THE INVENTION
The novelty of the present Invention resides in the combination of the steps of properly orienting perforations in a well casing relative to pre-determined stress fields, so that the perforations are aligned in the direction of likely fracture propagation plus the step of creating a propped fracture by means of a low viscosity fracturing fluid.
Preferred embodiments of the present Invention are directed to fracturing treatments in very tight gas-producing formations, and in particular, those having very high stress contrasts between the producing zones and the bounding layers.
The present Invention possesses numerous very significant advantages over the prior art. These shall be explained below.
A fracture will propagate in the direction perpendicular to the formation's minimum in situ stress. If the perforations are not oriented in that direction, the fracturing fluid does not take the most direct route into the fracture. Instead, the fluid exits the perforation (under tremendous pressure) and begins to fracture the formation directly opposite the perforation. Eventually, the fluid is redirected towards in the direction of maximum in situ stress (i.e., the path of least resistance); it is in this direction that the major fracture eventually propagates. Hence, the fluid—rather than travelling in the most direct route (from the perforation directly into the formation) takes a more tortuous route into the formation. This effect—often referred to as “near-wellbore tortuosity” —is highly undesirable. (It is also well documented in the literature, see, e.g., R. G. van de Ketterij and C. J. de Pater,
Impact of Perforations on Hydraulic Fracture Tortuosity
, 14(2) SPE Prod. & Facilities 131 (1999). The reason is that near-wellbore tortuo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Techniques for hydraulic fracturing combining oriented... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Techniques for hydraulic fracturing combining oriented..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Techniques for hydraulic fracturing combining oriented... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3034357

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.