Method of making a carriage assembly for a disk drive

Plastic and nonmetallic article shaping or treating: processes – Mechanical shaping or molding to form or reform shaped article – To produce composite – plural part or multilayered article

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S272150, C264S272190, C264S277000, C360S266500

Reexamination Certificate

active

06555043

ABSTRACT:

The present application is related to the following patent applications all of which are hereby incorporated by reference in their entirety: Ser. No. 08/866,189, filed on May 30, 1997, entitled “An Improved Operating System For Operating An Eject System And A Head Retraction System Of A Disk Drive” (Attorney Docket No. 10M-9460); Ser. No. 08/881,804, filed on May 30, 1997, entitled “Media Capture to Prevent Head Damage In A Removable Cartridge Disk Drive” (Attorney Docket No. IOM-9463); Ser. No. 08/866,225, filed on May 30, 1997, entitled “An Improved Head Retraction System for Retracting The Heads Of A Disk Drive” (Attorney Docket No. IOM-9464); Ser. No. 08/881,803, filed on May 30, 1997, entitled “Steering Magnets To Reduce Magnetic Leakage Flux In A Disk Drive” (Attorney Docket No. IOM-9507); Ser. No. 08/881,805, filed on May 30, 1997, entitled “Laminated Steel Return Path With Actuator Support Features” (Attorney Docket No. IOM-9508); Ser. No. 08/866,190, filed on May 30, 1997, entitled “Dual Loop Flex Circuit For A Linear Actuator” (Attorney Docket No. IOM-9509); Ser. No. 08/881,806, filed on May 30, 1997, entitled “Head Gimbal Protection For A Disk Drive” (Attorney Docket No. 9512); Ser. No. 08/866,168, filed on May 30, 1997, entitled “Flexured Mounting System For Friction Reduction And Friction Linearization In Linear Actuator For Disk Drive” (Attorney Docket No. IOM-9514); Ser. No. 08/881,807, filed on May 30, 1997, entitled “Return Path Geometry to Enhance Uniformity of Force On A Linear Actuator” (Attorney Docket No. IOM-9516); Ser. No. 08/886,180, filed on May 30, 1997, entitled “In-Rigger For A Linear Actuator Carnage Assembly” (Attorney Docket No. IOM-9517); Serial No. 08/866,171, filed on May 30, 1997, entitled “Integral Lift Wing For A Disk Drive Actuator” (Attorney Docket No. IOM-9518); Ser. No. 08/866,227, filed on May 30, 1997, entitled “Head Protection In A Disk Drive” (Attorney Docket No. IOM-9519); Ser. No. 08/866,167, filed on May 30, 1997, entitled “Self-Positioning Lever For Opening The Shutter Of A Removable Disk Cartridge” (Attorney Docket No. IOM-9525); Ser. No. 08/866,177, filed on May 30, 1997, entitled “Motor Loading System For A Disk Drive” (Attorney Docket No. IOM-9526); Ser. No. 08/866,226, filed on May 30, 1997, entitled “An Improved Eject System For Ejecting a Disk Cartridge From A Disk Drive” (Attorney Docket No. IOM-9527); Ser. No. 08/881,808, filed on May 30, 1997, entitled “Cover For A Disk Drive” (Attorney Docket No. IOM-9547).
FIELD OF THE INVENTION
The present invention is related to linear actuators for carrying read/write heads into engagement with a recording medium, and, more particularly, to a carriage assembly employed for mounting read/write heads.
BACKGROUND OF THE INVENTION
Description of the Prior Art
Disk drives for storing electronic information are found in a wide variety of computer systems, including workstations, personal computers, and laptop and notebook computers. Such disk drives can be stand-alone units that are connected to a computer system by cable, or they can be internal units that occupy a slot, or bay, in the computer system. Laptop and notebook computers have relatively small bays in which to mount internal disk drives and other peripheral devices, as compared to the much larger bays available in most workstation and personal computer housings. The relatively small size of peripheral bays found in laptop and notebook computers, can place significant constraints on the designer of internal disk drives for use in such computers. Techniques that address and overcome the problems associated with these size constraints are therefore important.
Disk drives of the type that accept removable disk cartridges have become increasingly popular.
FIG. 1
shows one disk drive product, known as the ZIP™ drive, that has been very successful. This disk drive is designed and manufactured by Iomega Corporation, the assignee of the present invention. ZIP™ drives accept removable disk cartridges that contain a flexible magnetic storage medium upon which information can be written and read. The disk-shaped storage medium is mounted on a hub that rotates freely within the cartridge. A spindle motor within the ZIP™ drive engages the cartridge hub when the cartridge is inserted into the drive, in order to rotate the storage medium at relatively high speeds. A shutter on the front edge of the cartridge is moved to the side during insertion into the drive, thereby exposing an opening through which the read/write heads of the drive move to access the recording surfaces of the rotating storage medium. The shutter covers the head access opening when the cartridge is outside of the drive, to prevent dust and other contaminants from entering the cartridge and settling on the recording surfaces of the storage medium.
The ZIP™ drive is presently available for workstations and personal computers in both stand-alone and internal configurations. In order to provide a version of the ZIP™ drive for use in laptop and notebook computers, the size constraints of the peripheral bays of such computers must be considered. In particular, for an internal drive to fit in the majority of laptop and notebook peripheral bays, the drive must be no longer than 135 mm. The height of the drive must be in the range of 12 to 15 mm. These dimensions place many constraints on the design of such a drive, and give rise to numerous design problems.
FIG. 1
shows a carriage assembly that is employed in the ZIP™ and disclosed in Ser. No. 08/727,128, entitled Actuator For Storage Device, filed on Oct. 8, 1996 and hereby incorporated by reference in its entirety. The ZIP™ drive carriage assembly
10
comprises a main carriage
12
, carriage arms
20
, load beams
24
, write/read heads
26
, voice coil
16
, an outrigger
18
and outrigger guide track
46
. The carriage arms
20
are formed with the main carriage
12
. Each carriage arm
20
is mechanically coupled to a corresponding load beam
24
. Each head
26
is mechanically coupled to a corresponding load beam
24
.
The carriage
12
comprises an elongated sidewall
28
that defines two opposing open ends
30
and
32
with a passage
34
extending therebetween. The open ends
30
and
32
are adapted to receive cylindrical bushings
36
and
38
. The passage
34
, open ends
30
and
32
, and bushings
36
and
38
are adapted to slidingly receive the guide track
40
.
The coil
16
is mounted to the carriage
12
by adhesives or other bonding methods. The outrigger
18
is mounted to a portion of the coil
16
and travels along the outrigger guide track
46
to prevent rotation of the carriage assembly
10
when the carriage assembly is in operation. Most of the components described above are coupled to one another by individual connecting steps, such as with adhesives and bonding methods. There are several drawbacks with having to attach these components individually.
One drawback with this carriage assembly is that each component must be individual attached within close tolerances to form the carriage assembly. These tolerance, however, require nearly exact precision which is relativley difficult to obtain. t would, therefore, be desirable to provide a carriage assembly that substantially meets the required tolerance more exactly and easily.
Another drawback this type of carriage assembly is that it-is relatively large and, therefore, cannot be employed in smaller electronic environments. It would therefore be desirable to provide a carriage assembly that can be employed in smaller electronic environments.
Yet another drawback of this type of carriage assembly is that it contains a relatively large number of components that must be designed, attached, and accounted for. It would therefore be desirable to reduce the number of components that comprise a carriage assembly.
SUMMARY OF THE INVENTION
In accordance with the present invention, a carriage assembly for carrying read/write heads into engagement with a recording medium is provided. The carriage assembly comprises a carriage body. The body defines a sidewall

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of making a carriage assembly for a disk drive does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of making a carriage assembly for a disk drive, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of making a carriage assembly for a disk drive will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3032632

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.