Polling for transmission power control

Multiplex communications – Communication over free space – Combining or distributing information via time channels

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S522000

Reexamination Certificate

active

06594251

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention is related to digital communication systems and more particularly to systems and methods for controlling output power of subscriber units in a point to multipoint communication system.
A point to multipoint wireless communication system represents a potentially effective solution to the problem of providing broadband network connectivity to a large number of geographically distributed points. Unlike optical fiber, DSL, and cable modems, there is no need to either construct a new wired infrastructure or substantially modify a wired infrastructure that has been constructed for a different purpose.
In order to conserve scarce spectrum, the data communication devices of a point to multipoint wireless communication system may share access to a common frequency. In a typical scenario a first group of one or more frequency channels are allocated to downstream broadcast communication from a central access point to a plurality of subscriber units. A second group of one or more separate frequency channels are allocated to upstream communication from the subscriber units to the central access point. For upstream communication there is a medium access control (MAC) protocol that determines which subscriber unit is permitted to transmit at which time so as to prevent interference.
For a given upstream frequency, the time domain is divided into frames which are typically of equal duration. Each frame represents an individually allocable unit in the time domain. One subscriber unit transmits in each frame. Reservations for transmission in a particular frame are made by the central access point and distributed in broadcast downstream transmissions. Such a scheme is referred to as a time domain multiple access scheme (TDMA).
In such a point to multipoint wireless communication system, it is generally preferable to centrally control the transmission power of each subscriber unit. Each subscriber unit should transmit at a power sufficient to ensure accurate reception of its transmission yet not so high so as to overload the front end of the central access points' receiver or cause interference to unintended receivers. Power control involves monitoring subscriber unit transmitted power at the central access point and sending power adjustment information downstream to maintain power at the desired level.
Cable modem systems also require access to a shared medium and subscriber unit power control. It would be desirable to simply adopt a MAC protocol already developed for cable applications to the wireless context. One such protocol that has been developed is referred to as the MCNS protocol. The MCNS protocol is described in the Data-over-Cable Service Interface Specifications, Radio Frequency Interface Specification, SP-RFI-I04-980724, (Cable Television Laboratories, 1997), the contents of which are herein incorporated by reference.
A cable MAC layer like MCNS is already implemented in low cost chip sets. The operational characteristics of MCNS are well known. Higher layer protocol hardware and software has been developed to interoperate with MCNS. Furthermore, it is desirable to maintain parts commonality between wireless modems and cable modems to the extent possible.
The MCNS protocol provides for controlling the power of subscriber units. In one implementation, the power control function is combined with monitoring of the round trip propagation delay between the central access point and individual subscriber units. Periodically, the central access point sends a ranging request message to a particular subscriber unit. In response to the ranging request message, the subscriber unit sends a ranging response to the central access point. Based on this transmission, the central access point establishes a round trip propagation delay and sends this value to the subscriber unit. The central access point measures the power level of the ranging response message. Based on the power measurement, the central access point sends the subscriber unit power adjustment information to help the subscriber unit set its power so that it will be received at a desired level.
This combined ranging and power control operation is, however, relatively infrequent, occurring approximately every two seconds in typical implementations. This MAC layer power control operation cannot easily be made more frequent because of the limited processing power provided by equipment implementing the MCNS protocol. Also, each subscriber unit's ranging response requires allocation of a special extended MAC frame to allow for uncertainty in response time, causing frequent updates to reduce system efficiency.
In a wireless system, the frequency of power control operations available with MCNS is insufficient. Channel response may vary too rapidly for the MCNS power control system to react. If hundreds of milliseconds have passed since the last update to the subscriber unit's power level, new data transmitted by the subscriber unit may be included in a transmission having an either excessive or insufficient power level received at the head end.
What is needed are systems and methods for providing more rapid update of subscriber unit power level. It is also desirable to interoperate with wireline MAC protocols.
SUMMARY OF THE INVENTION
Systems and methods for providing enhanced subscriber unit power control in a point to multipoint communication system are provided by virtue of the present invention. A central access point may send unsolicited grants of transmission time to individual subscriber units as part of a polling process. The subscriber units use the granted transmission time to transmit upstream to the central access point for the purpose of having their output power level measured and regulated. By issuing the unsolicited grants sufficiently frequently, the central access point may maintain optimal subscriber unit transmitter power level. The power control features of the present invention are particularly useful in fading environments such as found in a wireless system, especially when subscriber units do not transmit data upstream sufficiently frequently for power control to be based on measured power of data transmissions.
A first aspect of the present invention provides apparatus for operating a central access point in a digital communication system. The apparatus includes: a network management processor that sends a network management message to a subscriber unit. The network management message includes an unsolicited grant of a time slot for transmission from the subscriber unit to the central access point via a medium shared among multiple subscriber units. The apparatus further includes a physical layer system that receives within the time slot an upstream message from the subscriber unit, measures a received power level of the message, and sends the subscriber unit power adjustment information based on the received power level.
A second aspect of the present invention provides apparatus for operating a subscriber unit in a digital communication system. The apparatus includes a network management access control processor that receives a network management message from a central access point. The network management message includes an unsolicited grant of a time slot for transmission from the subscriber unit to the central access point via a medium shared among multiple subscriber units. The apparatus further includes a physical layer control processor that transmits within the timeslot an upstream message to the central access point, receives from the central access point power adjustment information based on a power level of the upstream message as received by the central access point, and adjusts transmit power of the subscriber unit based on the power adjustment information.


REFERENCES:
patent: 5745480 (1998-04-01), Behtash et al.
patent: 5809431 (1998-09-01), Bustamante et al.
patent: 6341214 (2002-01-01), Uesugi
patent: 6341215 (2002-01-01), Ozluturk
patent: 6341224 (2002-01-01), Dohi et al.
patent: 6442158 (2002-08-01), Beser

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polling for transmission power control does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polling for transmission power control, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polling for transmission power control will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3031468

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.