Flap test system

Measuring and testing – Fluid flow direction – With velocity determination

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S170010, C073S170020

Reexamination Certificate

active

06530272

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a flap test system for testing the strength of a flap that is provided in a main wing of an airplane by applying a load to the flap.
2. Description of the Related Art
A system for carrying out a load bearing test that inputs a load distributed along a span direction of a main wing of an airplane is disclosed in Japanese Patent Application Laid-open No. 8-159938. The disclosed conventional system has an arrangement that includes a large number of vertically movable electromagnetic probes aligned in the span direction beneath a lower face of the main wing. A corresponding number of fixed electromagnetic probes are disposed on an upper face of the main wing. The fixed electromagnetic probes attract the movable electromagnetic probes and drive the lower face of the main wing upward to provide a load with any type of desired distribution along the span direction.
With regard to a conventional static load test for the wing flap, a weight, such as a sandbag, is placed on the flap so as to apply a load that simulates an aerodynamic load. Strain gauges are used to measure the strain of each portion of the flap.
However, the above discussed conventional static load test requires intensive effort since changing the flap state, i.e., retraction, takeoff, cruising, and landing, and the application and removal of weights for the corresponding aerodynamic loads must be carried out manually by an operator. It is also rather difficult to carry out such operations with a reliably high level of precision as the direction in which the load is applied and the size of the load cannot be adjusted accurately, which makes it very difficult if not impossible to precisely reproduce the actual aerodynamic forces acting on the flap.
Moreover, since it is difficult to finely adjust the load there is a possibility that the flap might break during the test. Furthermore, since the application and removal of weights are carried out manually, it is impossible from a practical standpoint to carry out a dynamic load test that simulates the aerodynamic loads acting on the flap during takeoff and landing of the airplane as well as a durability test in which the durability of the flap is examined when the load is applied repeatedly, which requires an unreasonable amount of time and effort.
SUMMARY OF THE INVENTION
The present invention has been carried out in view of the above-described circumstances. It is a first object of the present invention to enable precise load and durability tests to be carried out by subjecting a wing flap to a load that accurately reproduces the actual aerodynamic load. Furthermore, it is a second object of the present invention to enable a static load test, a dynamic load test, and a durability test to be carried out precisely by a single flap test system.
In order to achieve the above-described first object, in accordance with a first aspect of the flap test system of the present invention, the strength of the flap provided in a main wing of an airplane is tested by applying a load to the flap. The system includes flap operation means for driving the flap to a predetermined down position. Load input means input a predetermined load to the flap. Movement means move the load input means so as to track the flap down position. Control means control the operation of the flap operation means so as to drive the flap to the predetermined down position. The control means also control the operation of the load input and movement means so as to apply a load to the flap that corresponds to its down position. Strain detection means detect the strain of each of the parts of the flap at a corresponding down position of the flap.
In accordance with the above-described system, the flap is driven to the predetermined down position by the flap operation means, the strain of each of portion of the flap is detected by the strain detection means while the load input means applies a load to the flap that corresponds to the down position, and the movement means moves the load input means so as to track the down position. As such, a realistic aerodynamic load can be accurately simulated continuously by applying a load having a size and direction that corresponds to the flap down position. Furthermore, precise load and durability tests can automatically be performed.
In the above-described first aspect, the flap operation means corresponds to a first hydraulic cylinder, the movement means corresponds to an XY table, the load input means corresponds to a second hydraulic cylinder, the control means corresponds to a control computer, and the detection means corresponds to a strain gage.
Furthermore, in order to achieve the above-described second object, in accordance with a second aspect of the flap test system of the present invention, the strength of a flap provided in a main wing of an airplane is tested by applying a load to the flap. The system includes flap operation means for driving the flap to a predetermined down position. Load input means input a predetermined load to the flap. First control means control the operation of the flap operation means so as to operate the flap with a predetermined sequence and also control operation of the load input means so as to apply a load to the flap that corresponds to its down position. Strain detection means detect the actual strain of each of the parts of the flap at a corresponding down position of the flap. Second control means compare the actual strain of each of the parts with a reference strain that is predetermined according to the flap down position and also suspend operation of the flap operation and load input means when the actual strain exceeds the reference strain.
In accordance with the above-described system, the flap operation means drives the flap to the predetermined down position with the predetermined sequence. Also, the strain detection means detects the strain of each of the parts of the flap while the load input means applies a load that corresponds to the down position to the flap. Accordingly, the predetermined sequence, the static load test, the dynamic load test and the durability test of the flap are carried out automatically, thereby saving a great deal of effort and operation time. Moreover, the actual strain of each of the parts of the flap detected by the strain detection means is compared with the predetermined reference strain. When the actual strain exceeds the reference strain, the operation of the flap operation means and the load input means is suspended, making it possible to prevent any damage to the flap and the test system.
Furthermore, in order to achieve the above-described second object, in accordance with a third aspect of the flap test system of the present invention and in
Furthermore, in order to achieve the above-described second object, in accordance with a third aspect of the flap test system of the present invention and in addition to the above-described second aspect, the flap test system further includes movement means to move the load input means so as to track the flap down position. Displacement detection means detect the actual displacement of the movement means tracking the flap down position. The second control means compares the actual displacement with a predetermined reference displacement of the movement means so as to track the flap down position and suspend the operation of the movement means when the actual displacement exceeds the reference displacement.
In accordance with the above-described system, the operation of the movement means is suspended when the actual displacement of the movement means exceeds the predetermined reference displacement of the movement means so as to track the flap down position. Accordingly, damage to the flap and the test system is prevented.
Furthermore, in order to achieve the above-described second object, in accordance with a fourth aspect of the flap test system of the present invention and in addition to the above-described second aspect or third aspect, the flap test system fu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flap test system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flap test system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flap test system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3029209

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.