Multi-layer optical record carrier not requiring spherical...

Dynamic information storage or retrieval – Storage medium structure – Optical track structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C369S283000, C369S286000

Reexamination Certificate

active

06538978

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a method of optically writing and subsequent reading and/or erasing information in a recording plane of an optical record carrier having at least two recording planes and a guide plane. A guide beam focused to a spot (guide focus) in the guide plane is used during writing, and at least one write beam focused to a writing spot (write focus) in the recording planes, the guide focus and the write focus being formed by one objective system and the guide focus being held in the guide plane by means of a focus error signal generated by the guide beam.
A multi-layer record carrier comprises a stack of information layers separated from one another by spacer layers, in which each information layer may comprise information. The large information storage capacity of such a record carrier increases its convenience of use compared to single-layer record carriers and reduces the price of the medium per unit of information. Each information layer can be scanned independently of the other information layers by means of a radiation beam. Dependent on the type of record carrier, information can be written into an information layer during scanning and/or information already written can be read or erased. The information layers in a stack can be scanned by means of a radiation beam which is incident from one side on the record carrier. For scanning the separate information layers, the height, or axial position, of the scanning spot formed by the radiation beam is varied. The information contents of the record carrier may be further increased by implementing the record carrier as a two-sided record carrier. Then a stack of information layers is present at both sides of the record carrier, and each stack can be scanned from a different side of the record carrier. A stack of information layers may be provided on a substrate which should be transparent if the stack is scanned through the substrate.
2. Description of the Prior Art
A method of the type mentioned in the opening paragraph is described in Japanese Patent Application 63-234418. In accordance with this method an objective system converges a guide beam to a guide focus on a guide plane in a record carrier. A focus servosystem controls the objective system in such a way that the guide focus remains in the guide plane in spite of possible excursions of the record carrier. A read or write beam, or generally a scanning beam, is focused by the objective system on a recording plane to be written or read, which plane is parallel to the guide plane. For this purpose the read/write focus of a read/write beam formed by the objective system must be displaceable with respect to the guide focus in the longitudinal direction, i.e. in the direction of the optical axis. Starting from a reference position of the scanning focus, which reference position is equal to the desired position of the guide focus, this is realised by displacing the radiation source supplying the scanning beam along the optical axis over discrete distances which match the distances between the recording planes.
To be able to use the known method with a so-called passive longitudinal adjustment of the scanning focus, the different recording planes of the record carrier must be very accurately parallel to the guide plane within the focus depth of the objective system, because otherwise the scanning focus is not always located in a recording plane to be scanned. A multilayer record carrier having such a high degree of parallelism of the layers is difficult to manufacture and is consequently expensive. Moreover, during writing, the scanning focus should accurately follow a given track in a recording plane to be scanned, while during reading the scanning focus should accurately follow the written information tracks. Japanese Patent Application 63-234418 does not reveal how this so-called transversal positioning of the scanning focus must be realised.
An information storage system of the type described in the opening paragraph is known from European Patent Application no. 0 517 491. in which a device is described for reading information lovers in a multi-layer record carrier. The device is provided with an adjustable spherical aberration compensator for compensating the spherical aberration incurred by the radiation beam of the device when it passes through the material of the record carrier. Since the information layers are located at different heights in the record carrier. the device employs a specific setting of the compensator for each information layer. A drawback of this known information storage system is that there should be a separate compensation for each information layer. A compensator which can realise this is complicated and relatively expensive. The relatively low cost of the record carrier per unit of information is thus counteracted by a relatively expensive scanning device.
SUMMARY OF THE INVENTION
An object of the invention is to provide a method and apparatus of the type described in the opening paragraph in which a record carrier which can easily be manufactured can be used and in which the transversal positioning problem is also solved.
Another object of the invention to provide an information storage system having a relatively low price and at the same time a high information density.
The method
In accordance with a first aspect of the invention the method is characterized in that during writing the transversal position of the write focus in a recording plane is coupled to the transversal position of the guide focus, the latter position being controlled by a tracking error signal obtained from the cooperation between the guide, beam and the guide plane, and in that during reading and/or erasing:
a) a read focus formed by a read beam is held in the scanned recording plane by means of a focus error signal obtained from the cooperation between the read beam and the scanned recording plane,
b) the focusing means introduce such a fixed, stack-associated spherical aberration in the radiation beam that this aberration compensates the spherical aberration incurred by the radiation beam when it is focused at approximately half the height of the stack of information layers, and
c) the transversal position of the read focus is controlled by a tracking error signal obtained from the cooperation between the read beam and the scanned recording plane.
The invention is based on the recognition that the transversal position of the write focus can be controlled by coupling this position to that of the guide focus by means of guide information in only one plane of the record carrier when writing all recording layers, and that the read focus can be controlled independently of the guide focus when reading written recording layers. Further, a stack of information layers can be scanned by a satisfactorily corrected scanning spot, while using a single, constant and suitably chosen spherical aberration compensation. Since the spherical aberration is not compensated anymore for each information layer individually as in the known system, the focusing means can be made simpler, reducing the cost of the scanning device. The spherical aberration incurred by a focused radiation beam as a function of the thickness of the material through which the beam passes appears to be sufficiently small for a reasonably large range of thicknesses, which range is located symmetrically around the thickness for which the radiation beam is well compensated. By compensating the radiation beam in such a way that the scanning spot is substantially free from spherical aberration at approximately half the height of the stack, it is possible to scan information layers located within said range at both sides of this half height with a sufficiently low spherical aberration. This provides the possibility of scanning a stack of information layers by means of a scanning beam which is compensated once for spherical aberration. A device suitable for scanning a record carrier having a single stack then only needs a single, fixed spherical aberration

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multi-layer optical record carrier not requiring spherical... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multi-layer optical record carrier not requiring spherical..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-layer optical record carrier not requiring spherical... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3026192

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.