Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From reactant having at least one -n=c=x group as well as...
Reexamination Certificate
2001-11-27
2003-09-02
Gorr, Rachel (Department: 1711)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
From reactant having at least one -n=c=x group as well as...
C528S073000, C252S182220, C525S440030, C540S202000, C540S356000
Reexamination Certificate
active
06613861
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to polyaddition products containing hydroxyl and uretdione groups, a process for their preparation, their use for the production of highly reactive polyurethane (PUR) powder coatings which are free from elimination products and which crosslink to give light-stable and weather-stable coating films of high gloss, and the powder coatings produced thereby.
2. Discussion of the Background
DE-C 30 30 572 presents a process for the preparation of polyaddition products which contain uretdione groups, and the products prepared accordingly. These are reaction products of the isocyanurate-free uretdione (UD) of 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI)—which can be prepared according to DE-C 30 30 513 or DE-C 37 39 549—with diols and, if desired, monoalcohols or monoamines. The reaction can be carried out in bulk or else in the presence of appropriate solvents. However, so far, in practice, this class of crosslinking agent has been produced in economically significant, saleable quantities only in a suitable solvent under mild conditions, at about 60° C., so as to avoid thermal ring cleavage during the synthesis. Preparation in bulk (i.e. in the absence of solvent) has not previously gone beyond the laboratory scale, since the viscosity reaches unmanageable levels during the reaction as a function of the molecular mass of the crosslinking agent. While DE-C 3030572 indicates that increasing the reaction temperature can operate as a means of controlling the reaction viscosity this measure is somewhat limited since higher temperatures can lead to detrimental effects on the reaction products.
This limit is also evident from the examples of DE-C 30 30 572 which use a product having a molecular weight of not more than 3,000 or at a uretdione/diol molar ratio of 5:4 for a uretdione grade having a free NCO content of 17 and a total NCO content of 37.8% by weight. If the free NCO content of the isophorone diisocyanate uretdione increases for a constant total NCO content (i.e. there is a simultaneous decrease in the degree of oligomerization and thus also in the molecular mass of the uretdione employed), then there is a corresponding decrease in the molecular mass of the uretdione group-containing polyaddition products. For the reasons given above, there seems little point in the preparation of uretdione group-containing polyaddition products of high molecular mass for use as crosslinking agents in the production of PUR powder coatings. This is also reflected in DE-C 30 30 539 and DE-C 30 30 588.
In DE-C 30 30 539 the molecular weights claimed are between 550 and 4,300, preferably between 1,500 and 2,000, and the uretdione/diol molar ratios are between 2:1 and 6:5, preferably between 3:2 and 5:4.
In DE-C 30 30 588 the claimed molecular weights are very similar, namely from 500 to 4,000, preferably between 1,450 and 2,800 at a uretdione/dial molar ratio comparable with that of DE-C 30 30 539.
Decisive disadvantages of the PUR powder coatings in accordance with the teachings of DE-C 30 30 539 and DE-C 30 30 588, which are free from elimination products, include the limited possibilities for combination with polymers containing hydroxyl groups. In DE-C 30 30 539, high functionalities of from ≧3.4 to ≦7, preferably from 3.7 to 4.5, were necessary. In order to achieve the high crosslinking density required for high-quality PUR powder coatings, it was necessary to compensate for the chain-terminating components of the crosslinking agent. In DE-C 30 30 588, it was necessary to take account of the free NCO content of the crosslinking agents in so far as the functionality of the hydroxyl group-containing polymers is to be adapted to the free NCO content in order to avoid gelling during extrusion, and therefore to suppress losses in the quality of the coatings. It was necessary to limit the OH functionality to from ≧2.2 to ≦3.5, preferably from 2.5 to 3.4. Complex investigation was and still is necessary in order to tailor the resin and curing agent to one another.
In DE-C 30 30 572, polyaddition products which contain uretdione groups and terminal OH groups are described in one example and are claimed. The scope corresponds to the polyaddition product specified above. However, the OH-terminal polyaddition products have so far acquired no importance in the PUR powder coating sector, since there was no economic value seen in comparing with the other crosslinking agents (see Example 5 of DE-C 30 30 572 in comparison with the remaining examples). The numbers speak for themselves. These and chemical reasons, namely the uncontrolled polyaddition of the free OH groups with NCO groups, which are additionally produced by uretdione cleavage during synthesis, have been considered as sufficient to attach no importance to this kind of crosslinking agent.
SUMMARY OF THE PRESENT INVENTION
Accordingly, one object of the present invention is to provide polyaddition products which contain hydroxyl and uretdione groups, which are useful as crosslinking agents for the production of PUR powder coatings which are free from elimination products.
A further object of the present invention is to provide PUR powder coatings produced from polyaddition products containing both hydroxyl and uretdione groups.
A further object of the present invention is to provide a methods for the production of polyaddition products which contain both hydroxyl and uretdione groups, in which the methods can be either solvent free or solution based methods.
These and other objects of the present invention have been satisfied by the discovery or polyaddition products containing hydroxyl and uretdione groups and having high molecular masses which are obtained by reacting
I. from 40 to 85% by weight of the uretdione of isophorone diisocyanate and
II. from 60 to 15% by weight of diols and/or chain extenders,
wherein the polyaddition products have terminal hydroxyl groups, have a functionality of 2 and a molecular mass of between 4,500 and 10,000, preferably between 5,500 and 7,000, which can be formulated, in combination with hydroxyl group-containing polymers, to give PUR powder coatings which, possess heightened reactivity and lead to a gloss which is outstanding for PUR powder coatings.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention accordingly relates to polyaddition products which contain hydroxyl and uretdione groups and are produced from the uretdione of isophorone diisocyanate and diols and/or chain extenders.
The invention also relates to the use of the polyaddition products in transparent or pigmented PUR powder coatings of high reactivity and excellent gloss which are free from elimination products and which are produced from the bifunctional polyaddition products, free of blocking agents and containing hydroxyl and uretdione groups, and from hydroxyl group-containing polymers and the additives customary in PUR chemistry.
The isocyanurate-free uretdione of isophorone diisocyanate is highly viscous at room temperature with a viscosity of greater than 10
6
mPa·s; at 60° C. the viscosity is 13·10
3
mPa·s and at 80° C. it is 1.4·10
3
mPa·s. The free NCO content is between 16.8 and 18.5% by weight, indicating that high proportions of the polyuretdione of IPDI must be present in the reaction product. The monomer content is ≈1%. The total NCO content of the reaction product after heating at 180-200° C. is 37.5-37.8% by weight.
Diols which are suitable for the preparation of the polyaddition products according to the present invention, include those diols conventionally used in PUR chemistry, with particular preference given to ethylene glycol (E), butane-1,4-diol (B), pentane-1,5-diol (P), hexane-1,6-diol (HD), 3-methylpentane-1,5-diol (Pm), 2,2,4(or 2,4,4)-trimethylhexanediol (TMH-d) and neopentylglycol hydroxypivalate (Eg).
The polyaddition products of the present invention advantageously contain chain extenders in the form of linear polyesters which contain hydroxyl groups and have
Gorr Rachel
Huels Aktiengesellschaft
LandOfFree
POLYADDITION PRODUCTS CONTAINING HYDROXYL AND URETDIONE... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with POLYADDITION PRODUCTS CONTAINING HYDROXYL AND URETDIONE..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and POLYADDITION PRODUCTS CONTAINING HYDROXYL AND URETDIONE... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3025511