Flexible drive for connecting remote electrical contacts

Metal working – Method of mechanical manufacture – Electrical device making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S747000, C029S748000, C029S752000, C029S754000

Reexamination Certificate

active

06560866

ABSTRACT:

TECHNICAL FIELD
This invention relates to remote insertion of connector pins, particularly employing flexible drive rods.
BACKGROUND OF THE INVENTION
Many applications, including heavily packed computer cabinets and other equipment employing electrically interconnected circuit boards, are often configured for electrical connections to an interface board, such as a mother board, back plane, or another circuit board buried deep within the cabinet. Connections in such inaccessible locations generally require blind insertion of connectors on a back edge of the circuit board into mating connectors buried deep within the cabinet. Furthermore, access is generally provided only through a single opening in the cabinet opposite the connector interface. Thus, the board installer is faced with blindly aligning connectors on the circuit board with mating connectors on the back wall of the cabinet. Several methods are known for providing initial alignment of the board within the cabinet. For example, the cabinet wall is often provided with slots configured to accept an edge of the circuit board and align it within the cabinet. In another example, bayonet pins are provided on the back edge of the circuit board to mate with precision holes positioned in the back wall of the cabinet. Furthermore, the connector housings are usually formed with mating pins and slots or another lead-in mechanism to guide engagement when the connector elements are brought together.
SUMMARY OF THE INVENTION
In instances where known circuit board alignment mechanisms often provide proper mating of connectors, the alignment they provide may be too gross to safely mate connectors having large numbers of very delicate connections. Although the housings of such connectors are typically formed with corresponding guide pins or another lead in mechanism, an aggressive installation often does not provide sufficient opportunity for the slender male pins to properly align with their correspondingly narrow female receptacles. In such instances, the fragile pins generally require a gentle easing together of the mating connector elements for successful insertion of the slender male pins into the correspondingly narrow female ports to avoid bending and other damage. One or more of the male pins may fail to completely align with its female receptacle and become bent or completely crushed during installation. The connector installation device of the present invention provides the controlled force needed to gently and certainly engage connector elements, without damage.
The present invention provides a mechanism for gently urging counterpart male and female connector elements together. The present invention provides a connector installation device wherein a connector has a fixed or stationary connector element and another connector element that is movable along an engagement axis with the fixed connector element and mates with the fixed connector element.
According to one aspect of the invention, a connector installation device is provided, the installation device including a connector having a first positionally fixed connector element and a second connector element movable along a connector engagement axis and interconnecting with the positionally fixed connector element; and an insertion drive device engaged with the second connector element and moving the second connector element along the engagement axis, the insertion drive device having an externally-threaded rod engaged with a stationary internally-threaded member that is positionally fixed relative to the first positionally fixed connector element. The threaded rod is further formed as either a substantially rigid member or a substantially flexible threaded rod.
According to another aspect of the present invention, the flexible drive element is formed with a compressively wound helical coil springs threadedly engaged with internally threaded nuts matched thereto in diameter and pitch. The flexible drive elements are able to undergo directional changes that allow the drive torque to be input both spatially and dimensionally remotely from the respective insertion and extraction cams. Preferably, the flexible threaded rod following a curving path between a first drive input end and a second drive output end engaged with the second connector element.
In order to overcome helical buckling along an unsupported length of the flexible threaded rod, the invention further provides a tubular guide that directs either or both of straight and curving portions of the path of the flexible threaded rod.
According other aspects of the invention, the movable connector element is formed with an insertion drive surface oriented relatively to the engagement axis. An insertion cam positioned proximately to the movable connector element includes an actuation surface facing and mating with the insertion drive surface of the moveable connector. An actuator tip at the end of the actuation surface is spaced away from the insertion drive surface of the movable connector element. The insertion cam is movable perpendicular to the engagement axis of the male and female connector elements. An insertion drive mechanism is interconnected with the insertion cam and is movable along an installation axis substantially perpendicularly to the engagement axis. A drive force applied to the insertion drive mechanism translates the insertion cam tip and actuation surface along the installation axis into contact with insertion drive surface of the insertion cam. Pressure of the insertion cam's actuation surface against the insertion drive surface of the movable connector translates the movable connector element along the engagement axis toward the fixed connector element. The gentle easing of the engagement of the moveable and fixed connector elements allows sufficient opportunity for guidance mechanisms on the connector housings to orient the pins for insertion into the corresponding female receptacles.
According to various aspects of the invention, the actuation surface is an inclined surface formed in a wedge-shaped insertion cam and engages a matchingly inclined insertion drive surface of the moveable connector element. Preferably, the insertion cam is slidingly engaged with a guide channel that supports the insertion cam and directs it along the installation axis.
According to another aspect of the invention, an extraction cam is provided to disengage the moveable connector element from the stationary connector element. Accordingly, an extraction drive surface is provided on the movable connector element facing but spaced away from the insertion drive surface. An extraction cam configured similarly to but oppositely from the insertion cam is driven by an extraction drive on an extraction axis parallel to but spaced away from the insertion axis. An inclined surface on the extraction cam engages the extraction drive surface and gently eases the movable connector element along the engagement axis away from the fixed connector element. The extraction cam is slidingly engaged with an extraction cam guide that supports the extraction cam and directs it along the extraction axis.
According to yet other aspects of the present invention, methods are provided that utilize the insertion and extraction drivers to alternately engage and disengage the fixed and mobile connector elements.


REFERENCES:
patent: 4258469 (1981-03-01), Salvesen
patent: 4414736 (1983-11-01), Fieberg et al.
patent: 4429451 (1984-02-01), Angelico
patent: 4759122 (1988-07-01), Weintraub
patent: 5288251 (1994-02-01), Sumida
patent: 5498173 (1996-03-01), Drewanz et al.
patent: 5681185 (1997-10-01), Briski et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flexible drive for connecting remote electrical contacts does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flexible drive for connecting remote electrical contacts, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flexible drive for connecting remote electrical contacts will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3025394

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.