Thermoplastic resin composition

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S262000, C524S263000, C524S265000, C524S484000, C524S538000

Reexamination Certificate

active

06545075

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a resin composition comprising poly(arylene sulfide) and a polyamide-imide, and particularly to a thermoplastic resin composition improved in compatibility, molding or forming ability, melt-flow properties and mechanical properties.
BACKGROUND ART
Poly(arylene sulfides) (hereinafter abbreviated as “PASs”) represented by poly(phenylene sulfide) (hereinafter abbreviated as “PPS”) are engineering plastics excellent in heat resistance, flame retardancy, chemical resistance, dimensional stability, mechanical properties and the like, and widely used electric and electronic parts, precision machinery parts, automotive parts, etc. However, the PASs have a comparatively low glass transition temperature and are greatly lowered in elastic modulus in a temperature range not lower than the glass transition temperature, so that their use has been limited in application fields of which high elastic modulus is required in a high temperature not lower than 100° C.
On the other hand, polyamide-imides are engineering plastics excellent in heat resistance, mechanical properties, electrical properties, chemical resistance and the like. However, most of them are difficult to injection-mold, and they have been mainly used in application fields of varnishes, films and the like in the past.
Japanese Patent Application Laid-Open No. 306283/1994 discloses that resin compositions improved in melt moldability can be provided without impairing their heat resistance by blending an aromatic polyamide-imide copolymer having a repeating units of a specific structure with PPS. Since PAS and polyamide-imide are poor in compatibility with each other, however, it has been difficult to obtain a resin composition having sufficient mechanical properties by simply blending them.
DISCLOSURE OF THE INVENTION
It is an object of the present invention to provide a thermoplastic resin composition comprising a poly(arylene sulfide) and polyamide-imide, improved in compatibility between both resins and having excellent molding or forming ability, melt-flow properties and mechanical properties.
Another object of the present invention is to provide a thermoplastic resin composition by which both elastic modulus of a poly(arylene sulfide) at a high temperature and injection moldability of polyamide-imide are improved, and the flash length upon injection molding is reduced.
The present inventors have carried out an extensive investigation with a view toward overcoming the above-described problems involved in the prior art. As a result, it has been found that when a silane compound having a specific functional group is added to a resin component comprising a PAS and polyamide-imide, compatibility between both resins is markedly improved, thereby providing a thermoplastic resin composition having excellent molding or forming ability, melt-flow properties and mechanical properties.
When the silane compound having the specific functional group is added in the case where a fibrous or non-fibrous filler, other resins and the like are incorporated into the resin component comprising the PAS and polyamide-imide, the compatibility of the respective components including the additive component with one another is markedly improved to provide a thermoplastic resin excellent in various properties.
According to the thermoplastic resin compositions according to the present invention, the elastic modulus of the PAS at a high temperature and the injection moldability and extrudability of the polyamide-imide are improved while making the best use of the flame retardancy, chemical resistance, dimension stability and mechanical properties brought about by the PAS, and the heat resistance, mechanical strength, electrical properties and chemical resistance brought about by the polyamide-imide.
The present invention has been led to completion on the basis of these findings.
According to the present invention, there is thus provided a thermoplastic resin composition comprising 100 parts by weight of a resin component containing 40 to 99 wt. % of a poly(arylene sulfide) (A) and 1 to 60 wt. % of polyamide-imide (B), and 0.01 to 10 parts by weight of a silane compound (C) containing at least one functional group selected from the group consisting of amino, ureido, epoxy, isocyanate and mercapto groups.
BEST MODE FOR CARRYING OUT THE INVENTION
Poly(arylene sulfide) (PAS):
The PAS useful in the practice of the present invention is an aromatic polymer having predominant repeating units of arylene sulfide represented by the formula [—Ar—S—] in which —Ar— means an arylene group. When the [—Ar—S—] is defined as 1 mole (basal mole), the PAS used in the present invention is a polymer containing this repeating unit in a proportion of generally at least 50 mol %, preferably at least 70 mol %, more preferably at least 90 mol %.
As examples of the arylene group, may be mentioned a p-phenylene group, a m-phenylene group, substituted phenylene groups (the substituent being preferably an alkyl group having 1 to 6 carbon atoms or a phenyl group), a p,p′-diphenylene sulfone group, a p,p′-biphenylene group, a p,p′-diphenylenecarbonyl group and a naphthylene group. As the PAS, a polymer predominantly having only the same arylene groups may preferably be used. However, a copolymer having two or more different arylene groups may be used from the viewpoint of processability and heat resistance.
Among these PASs, PPS having predominant repeating units of p-phenylene sulfide is particularly preferred because it is excellent in processability and industrially available with ease. Besides the PPS, poly(arylene ketone sulfides), poly(arylene ketone ketone sulfide) and the like may be used. As specific examples of copolymers, may be mentioned random or block copolymers having repeating units of p-phenylene sulfide and repeating units of m-phenylene sulfide, random or block copolymers having repeating units of phenylene sulfide and repeating units of arylene ketone sulfide, random or block copolymers having repeating units of phenylene sulfide and repeating units of arylene ketone ketone sulfide, and random or block copolymers having repeating units of phenylene sulfide and repeating units of arylene sulfone sulfide. These PASs are preferably crystalline polymers. The PASs are preferably linear, or slightly branched or crosslinked polymers from the viewpoints of toughness and strength.
Such a PAS can be obtained in accordance with any publicly known process (for example, Japanese Patent Publication No. 33775/1988) in which an alkali metal sulfide and a dihalogen-substituted aromatic compound are subjected to a polymerization reaction in a polar solvent.
As examples of the alkali metal sulfide, may be mentioned lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide and cesium sulfide. Sodium sulfide formed by the reaction of NaSH and NaOH in the reaction system may also be used.
As examples of the dihalogen-substituted aromatic compound, may be mentioned p-dichlorobenzene, m-dichlorobenzene, 2,5-dichlorotoluene, p-dibromobenzene, 2,6-dichloronaphthalene, 1-methoxy-2,5-dichlorobenzene, 4,4′-dichlorobiphenyl, 3,5-dichlorobenzoic acid, p,p′-dichlorodiphenyl ether, 4,4′-dichlorodiphenyl sulfone, 4,4′-dichlorodiphenyl ether, 4,41-dichlorodiphenyl sulfone, 4,4′-dichlorodiphenyl sulfoxide and 4,4′-dichlorodiphenyl ketone. These compounds may be used either singly or in any combination thereof.
In order to introduce some branched or crosslinked structure into the PAS, a small amount of a polyhalogen-substituted aromatic compound having at least 3 halogen substituents per molecule may be used in combination. As preferable examples of the polyhalogen-substituted aromatic compounds, may be mentioned trihalogen-substituted aromatic compounds such as 1,2,3-trichlorobenzene, 1,2,3-tribromobenzene, 1,2,4-trichlorobenzene, 1,2,4-tribromobenzene, 1,3,5-trichlorobenzene, 1,3,5-tribromobenzene and 1,3-dichloro-5-brdmobenzene, and alkyl-substituted derivatives thereof.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thermoplastic resin composition does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thermoplastic resin composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermoplastic resin composition will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3025237

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.