Digital voltage regulator using current control

Electricity: power supply or regulation systems – Output level responsive – Using a three or more terminal semiconductive device as the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C323S283000, C323S204000, C323S285000

Reexamination Certificate

active

06590369

ABSTRACT:

BACKGROUND
The present invention relates generally to voltage regulators, and more particularly to control systems for switching voltage regulators.
Voltage regulators, such as DC to DC converters, are used to provide stable voltage sources for electronic systems. Efficient DC to DC converters are particularly needed for battery management in low power devices, such as laptop notebooks and cellular phones. Switching voltage regulators (or more simply “switching regulators”) are known to be an efficient type of DC to DC converter. A switching regulator generates an output voltage by converting an input DC voltage into a high frequency voltage, and filtering the high frequency voltage to generate the output DC voltage. Typically, the switching regulator includes a switch for alternately coupling and de-coupling an unregulated input DC voltage source, such as a battery, to a load, such as an integrated circuit. An output filter, typically including an inductor and a capacitor, is coupled between the input voltage source and the load to filter the output of the switch and thus provide the output DC voltage. A controller measures an electrical characteristic of the circuit, e.g., the voltage or current passing through the load, and sets the duty cycle of the switch in order to maintain the output DC voltage at a substantially uniform level.
Voltage regulators for microprocessors are subject to ever more stringent performance requirements. One trend is to operate at higher currents, e.g., 35-50 amps. Another trend is to turn on or off different parts of the microprocessor in each cycle in order to conserve power. This requires that the voltage regulator react very quickly to changes in the load, e.g., several nanoseconds to shift from the minimum to the maximum load. Still another trend is to place the voltage regulator close to the microprocessor in order to reduce parasitic capacitance, resistance and/or inductance in the connecting lines and thereby avoid current losses. However, in order to place the voltage regulator close to the microprocessor, the voltage regulator needs to be small and have a convenient form factor.
In addition to these specific trends, high efficiency is generally desirable in order to avoid thermal overload at high loads and to increase battery life in portable systems. Another desirable feature is for the voltage regulator to have a “standby mode” which consumes little power at low loads.
Conventional controllers are constructed from analog circuits, such as resistors, capacitors and op-amps. Unfortunately, analog circuits are expensive and/or difficult to fabricate as integrated circuits. Specifically, special techniques are needed to fabricate resistors and semiconductor devices. In addition, analog signals can be degraded by noise, resulting in a loss of information.
In view of the foregoing, there is room for improvement in voltage regulators and control systems for voltage regulators.
SUMMARY
In general, in one aspect, the invention is directed to a voltage regulator. The regulator has an input terminal coupled to an input voltage source and an output terminal coupled to a load. A switching circuit intermittently couples the input terminal and the output terminal in response to a digital control signal. A filter provides a generally DC output voltage at the output terminal. A current sensor generates a digital first feedback signal representing the current passing through the switching circuit. A voltage sensor generates a second feedback signal representing the output voltage. A digital controller receives and uses the digital feedback signal to generate the digital control signal. The digital controller is configured to maintain the output voltage at the output terminal at a substantially constant level.
In another aspect, the invention is directed to a voltage regulator having an input terminal coupled to an input voltage source and an output terminal coupled to a load. The voltage regulator has a plurality of slaves, each slave having a switching circuit to intermittently couple the input terminal and the output terminal in response to a digital control signal, a filter to provide a generally DC output voltage at the output terminal, a current sensor to generate a digital feedback signal representing the current passing through the switching circuit, and a digital controller which receives and uses the digital feedback signals from the slave plurality of slaves to generate the plurality of digital control signals. The digital controller is configured to maintain the output voltage at the output terminal at a substantially constant level.
In another aspect, the invention is directed to a method of operating a voltage regulator which has an input terminal coupled to an input voltage source and an output terminal coupled to a load. The input terminal and the output terminal are coupled intermittently by a switching circuit in response to a digital control signal. An output of the switching circuit is filtered to provide a generally DC output voltage at the output terminal. A digital feedback signal is generated representing the current passing through the switching circuit with a current sensor. A digital controller receives and uses the digital feedback signal from the slave to generate the digital control signal. The digital controller is configured to maintain the output voltage at the output terminal at a substantially constant level.
In another aspect, the invention is directed to a voltage regulator having an input terminal coupled to an input voltage source and an output terminal coupled to a load. A switching circuit intermittently couples the input terminal and the output terminal in response to a control signal. A filter provides a generally DC output voltage at the output terminal. A digital controller operates at a clock frequency f
clock
which is significantly faster than a desired switching frequency f
switch
of the switching circuit. Each clock cycle the digital controller receives a first digital feedback signal derived from an output voltage at the output terminal and a second digital feedback signal derived from a current passing through the switching circuit, and generates the control signal to control the switching circuit so that the output voltage is maintained at a substantially constant level.
In another aspect, the invention is directed to a method of operating a voltage regulator which has an input terminal coupled to an input voltage source and an output terminal coupled to a load. The input terminal and the output terminal are intermittently coupled by a switching circuit in response to a control signal. An output of the switching circuit is filtered to provide a generally DC output voltage at the output terminal. A digital controller is operated at a clock frequency f
clock
which is significantly faster than a desired switching frequency f
switch
of the switching circuit. The digital controller receives a first digital feedback signal derived from an output voltage at the output terminal and a second digital feedback signal derived from a current passing through the inductor each clock cycle each clock cycle. The control signal is generated with the digital controller to control the switching circuit so that the output voltage is maintained at a substantially constant level.
Advantages of the invention may include the following. The voltage regulator handles relatively large currents reacts quickly to changes in the load. The voltage regulator may use small capacitors with a convenient form factor. The voltage regulator can include multiple slaves which are operated out of phase in order to reduce current ripple. The use of analog circuits is minimized by converting analog measurements in the controller into digital signals. The controller may be implemented using mostly digital circuitry, and may be fabricated using known processes through conventional complementary metal oxide semiconductor (CMOS) fabrication techniques. This reduces the number of off-chip components in the controller. The controller operates with

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Digital voltage regulator using current control does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Digital voltage regulator using current control, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Digital voltage regulator using current control will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3024622

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.