Polyolefin articles with long-term elevated temperature...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S096000, C524S100000, C524S101000, C524S108000, C524S131000, C524S146000, C524S153000, C524S199000, C524S232000, C524S248000, C524S291000, C524S336000, C524S343000, C524S349000, C524S359000

Reexamination Certificate

active

06538056

ABSTRACT:

FIELD OF THE INVENTION
The invention pertains to the thermo-oxidative stabilization of black pigmented polyolefins, e.g. polyethylene and polypropylene.
BACKGROUND OF THE INVENTION
Compounded polyolefin resins, including polyethylene and polypropylene are increasingly sought for articles which can withstand long term high temperature service, such as automotive under-the-hood parts. The physical, chemical and electrical properties of polyolefin require the use conventionally of carbon black which can improve their stability against light or for coloring, but have a known deleterious effect on long term heat aging performance. Also, other inorganic fillers are sometimes incorporated therein to improve the mechanical properties of polyolefins. On the other hand, polyolefin resins are highly susceptible to thermal oxidative deterioration, and therefore in the past methods phenolic antioxidants and sulfur antioxidants have been used in combination for their antioxidation. Nevertheless, particularly polyolefin resin compositions containing carbon black with these stabilizers still have a disadvantage of less than desired stability against thermo-oxidation, and thus their improvement is sought.
The shortcoming in thermo-oxidative stability of polyolefins containing carbon black and/or inorganic fillers is reported to be due in large part to deactivation of stabilizers by carbon black and inorganic fillers. Adsorption of stabilizers onto the surface of carbon black particles, and absorption into the interstices of the carbon black particles has been previously shown.
In order to improve the stability of polyolefin resins containing carbon black against thermo-oxidation, some proposals have been made, including a method in which a metal deactivator is incorporated therein (Japanese Patent Kokai No. 207733/91), a method in which a piperidine compound is incorporated therein (Japanese Patent Kokai No. 42441185 and Plastics Compounding, 1987, July/August, pp. 35, 38, 39), and the incorporation of epoxy resins which provide an impervious surface layer on carbon black.
U.S. Pat. No. 5,214,084 discloses an inorganic filled polypropylene stabilized by incorporating therein the following components:
a hindered phenolic compound having a molecular weight of not less than 500,
a high-molecular hindered piperidine compound,
a low-molecular hindered piperidine compound,
a benzoate compound such as 2,4-di-t-butylphenyl 3,5-di-t-butyl-4-hydroxybenzoate,
a phosphorous compound, and
an amide compound such as ethylene-bis stearylamide.
Furthermore, a method is proposed in U.S. Pat. No. 4,985,480 wherein an amide compound is added to polyolefin resins which contain an inorganic filler such as talc, to improve their stability against thermal oxidation.
U.S. Pat. No. 4,925,889 discloses a carbon black filled polyolefin, a stabilizing amount of a N-phenyl-N′-(p-toluenesulfonyl)-p-phenylenediamine first stabilizer and a second stabilizer component of at least one amine antioxidant selected from the group consisting of a para-substituted, aralkyl-substituted diphenylamine; a para-phenylenediamine and a polymerized dihydroquinoline incorporated into said polyolefin.
A number of substituted phenol compounds, e.g. trialkylphenols, for example 2,6-di-tert-butyl-4-methylphenol and 2,4-dimethyl-6-(1-methylpentadecyl)phenol (U.S. Pat. No. 5,098,945), and their use for stabilizing organic materials are known, and the stabilizing action of sterically hindered phenyls is also described, inter alia, in U.S. Pat. No. 3,944,594, U.S. Pat. No. 3,644,482, U.S. Pat. No. 5,086,173, U.S. Pat. No. 3,644,482, CA 843 985, U.S. Pat. No. 3,681,417.
In general, substituted phenyl compounds that exhibit antioxidant properties for thermoplastics in general contain a phenol group which is substituted by 1 to 3 radicals such as o-, m- or p-methylphenyl, 2,3-dimethylphenyl, 2,4-dimethylphenyl, 2,5-dimethylphenyl, 2,6-dimethylphenyl, 3,4-dimethylphenyl, 3,5-dimethylphenyl, 2-methyl-6-ethylphenyl, 2-methyl-4-tert-butylphenyl, 2-ethylphenyl, 2,6-diethylphenyl, 2,6-diethyl-4-methylphenyl, 2,6-diisopropylphenyl, 4-tert-butylphenyl, p-nonylphenyl, o-, m- or p-chlorophenyl, 2,3-dichlorophenyl, 2,4-dichlorophenyl, 2,5-dichlorophenyl, 2,6-dichlorophenyl, 3,4-dichlorophenyl, 2,4,5-trichlorophenyl, 2,4,6-trichlorophenyl, o-, m- or p-hydroxyphenyl, o-, m- or p-methoxyphenyl, o- or p-ethoxyphenyl, 2,4-dimethoxyphenyl, 2,5-dimethoxyphenyl, 2,5-diethoxyphenyl, o-, m- or p-methoxycarbonyl, 2-chloro-6-methylphenyl, 3-chloro-2-methylphenyl, 3-chloro-4-methylphenyl, 4-chloro-2-methylphenyl, 5-chloro-2-methylphenyl, 2,6-dichloro-3-methylphenyl, 2-hydroxy-4-methylphenyl, 3-hydroxy-4-methylphenyl, 2-methoxy-5-methylphenyl, 4-methoxy-2-methylphenyl, 3-chloro4-methoxyphenyl, 3-chloro-6-methoxyphenyl, 3-chloro-4,6-dimethoxyphenyl and 4-chloro-2,5-dimethoxyphenyl groups.
U.S. Pat. No. 5,376,290 discloses substituted bis-(mercaptomethyl)-phenols as stabilizers, for example: 2,6-bis-(2′-hydroxyethylthiomethyl)-4-methylphenol, 2,6-bis-(2′,3′-dihydroxypropylthiomethyl)-4-methylphenol, 2,6-bis-(2′-methylaminocarbonylethylthiomethyl)-4-phenylphenol, 2,6-bis-(N,N-diethylaminocarbonyl-ethylthiomethyl)-4-allyl-phenol, 2,6-bis-(n-octylthiomethyl)-4-methylphenol, 2,6-bis-(t-octylthiomethyl)-4-t-butyl-phenol.sup.1,2,6-bis-(t-dodecylthiomethyl-4-t-octyl-phenol.sup.2,2,6-bis-(benzylthiomethyl)-6-methylphenol, 2,6-bis-(phenylthiomethyl)-4-t-butyl-phenol, 2,6-bis-(2′-ethylhexyloxycarbonylmethylthiomethyl)-4-cyclohexyl-phenol, 2,6-bis-(n-octadecyloxycarbonylmethylthiomethyl)-4-propargyl-phenol, 2,6-bis-[2′-(2″-ethylhexyloxycarbonyl)-ethylthiomethyl]4-t-butylphenol, 2,2-bis-[4′,4″-dihydroxy-3′,3″,5′,5″-tetrakis-(octylthiomethyl)-phenol]-propane, 2,2-bis-]4′,4″-dihydroxy-3′,3″,5′,5″-tetrakis-(dodecylthiomethyl)-phenyl]- methane and bis-[4′,4″-dihydroxy-3′,3″,5′,5″-tetrakis-(2-ethylhexyloxycarbonylmethylth iomethyl)-phenyl] thioether.
Other known primary antioxidant include tetrakis[methylene-3-(3′,5′-di-tert-butyl-4′-hydroxyphenyl)propionate]methane, sold under the IRGANOX tradename.
In “Atmospheric Oxidation and Antioxidants”; Elsevier Publishing Company (1965), pages 120-125, the author describes the connection between stabilizing action and substitution at the phenol for mineral oils.
U.S. Pat. No. 3,344,113 discloses the use of a mixed esters of thiopropionic acid, e.g., dilauryl, distearyl, and lauryl stearyl thiodipropionates as an improved system relative to the individual stabilizers in polyolefins.
U.S. Pat. No. 3,511,802 discloses the stabilization of polypropylene resins with alkyl-substituted phenols. The preparation as well as the spectra of secondary alkylphenols are given in Chemical Abstracts 69:10147s and 72:11860t.
“Rubber Chemistry and Technology” 47 (1974), No. 4, pages 988 and 989, describes the mode of action of antioxidants.
Elemental sulfur compounds and diaryl disulfides are reported as effective hydroperoxide decomposers by generating sulfur dioxide. Synergistic improvement in combinations with alkylated phenol anitoxidant is also reported. Hawkins and Sutter,
J of Polymer Sci
. 1, pp. 3499-3509 (1963).
C. Uzelmeier, of Shell Chemical, has reported the mechanism by which pigments can degrade the heat resistance of polypropylene. Interaction between carbon black and stabilizers by way of absorption and reaction with the carbon black particle surface are well documented. W/L. Hawkins, et al,
J Appl. Polym. Sci
., 1,37 (1959). Carbon black alone is seen to extend the oxygen induction period of polypropylene at 150° C. at 1 atmosphere oxygen. Carbon black accelerates autoxidation from heat by 56% at levels of 0.1 phr relative to unpigmented, heat-stabilized resin. None of the pigments reported improves the oven heat-aging of polypropylene.
GB 820,207 discloses the use of water soluble disperse dyes extended with vinylic fillers. Vinyli

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polyolefin articles with long-term elevated temperature... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polyolefin articles with long-term elevated temperature..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polyolefin articles with long-term elevated temperature... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3022314

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.