Fluoromonomers and method of production, and new...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06531558

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to new fluoromonomers having the generic structure: CF
2
═CF(OCH
2
CH
2
)
n
OR where n is an integer and R is a functional group and methods for producing same. The present invention also relates to new fluoropolymers prepared from any one or combination of the new fluoromonomers and having the generic structure: —[—CF
2
CF{(OCH
2
CH
2
)
n
OR}—]
m
— where n is an integer, m is an integer and R are any one or combination of functional groups. The method also relates to new copolymers or terpolymers prepared from the new fluoromonomers alone, the new fluoromonomers and existing fluoromonomers or the new fluoromonomers and existing hydrocarbon monomers.
BACKGROUND OF THE INVENTION
Fluoromonomers
1-alkoxy/aryloxy-1,2,2-trifluoroethenes or 1-(substituted)fluoro/perfluoroalkoxy-1,2,2-trifluoroethenes(trifluorovinyl ethers or TFVEs) have been previously synthesized by two principal synthetic routes that do not involve the use of elemental halogens or hydrogen fluoride.
For example, U.S. Pat. No. 2,917,548 to Dixon [1] discloses the preparation and polymerization of 1-methoxy-1,2,2-trifluoroethene which was prepared by the reaction of sodium methoxide with tetrafluoroethylene. This reaction was expanded by Okuhara, et al.
Bull. Chem. Soc. Jap.
1962, 35, 532-535 [2] to include ethoxide, isopropoxide and tert-butoxide substituted TFVEs. 1-ethoxy-1,2,2-trifluoroethene was polymerized with “common free radical initiators”. This method required high pressure reaction equipment to achieve high tetrafluoroethylene pressures and long reaction times (and in one instance an explosion was reported) [2].
U.S. Pat. No. 3,277,068 to Wall et al. [3] discloses the preparation of 1-phenoxy-1,2,2-trifluoroethenes, and polymers derived therefrom. The monomer was prepared by the reaction of an alkali metal phenoxide with tetrafluoroethylene. Tetrafluoroethylene pressures greater 200 PSI were required. No phase transfer catalyst was used.
U.S. Pat. No. 5,162,468 to Babb et al. [4] and U.S. Pat. No. 5,198,513 to Clement et al. [5] disclose the preparation and polymerization of trifluorovinyl compounds, CF
2
═CF—O—R—(O—CF═CF
2
)
m
, where R represents an unsubstituted or inertly substituted hydrocarbyl group and m is an integer of from 1 to 3. These compounds were prepared by reaction of an appropriate salt with 1,2-dihalo-1,1,2,2-tetrafluoroethane to form intermediates, Z—CF
2
CF
2
—O—R—(O—CF
2
CF
2
—Z)
m
, where each Z is independently iodine or bromine. Elimination of the halogen atoms represented by Z formed the trifluorovinyl compounds.
U.S. Pat. No. 3,114,778 to Fritz et al. [6], U.S. Pat. No. 3,180,895 to Harris et al. [7], and U.S. Pat. No. 3,250,808 to Moore et al. [8] disclose a method to prepare 1-fluoro/perfluoroalkoxy-1,2,2-trifluoroethenes, and polymers derived therefrom. These monomers where prepared by pyrolysis of 2-fluoro/perfluoroalkoxy-2,3,3,3-tetrafluoropropionic acid intermediates or derivatives thereof. U.S. Pat. No. 5,391,796 to Farnham [9] discloses a method to prepare 1-(substituted)fluoro/perfluoroalkoxy-1,2,2-trifluoroethenes, and polymers derived therefrom. These monomers were prepared by pyrolysis of compounds represented by R
1
—O—(C
2
F
4
)CO
2
SiR
2
3
, where R
1
represents an unsubstituted or inertly substituted hydrocarbyl or fluorocarbyl group and R
2
is independently hydrocarbyl, substituted hydrocarbyl or an oxysilyl group.
Pellerite
J. Fluorine Chem.
1990, 49, 43-46 [10] reported the synthesis of 1-alkoxy-1,2,2-trifluoreoethenes by pyrolysis of 2-alkoxy-2,3,3,3-tetrafluoropropionate salts. The pyrolysis resulted in unanticipated chemistry with negligible to low yields of 1,2,2-trifluoroethenes depending on the alkoxy substituent and propionate counterion.
U.S. Pat. No. 4,337,221 [11] and U.S. Pat. No. 4,515,989 to Ezzell et al. [12] disclose the preparation 1-(substituted)fluoro/perfluoroalkoxy-1,2,2-trifluoroethenes and polymers derived therefrom. The former were prepared from 2-fluoro/perfluoroalkoxy-3-chloro-2,3,3-trifluoropropionyl fluoride intermediates. The intermediates reacted with sodium carbonate at temperatures between ambient and 80° C. to form the monomers in very high yields.
Fluoropolymers
Fluorochemicals are hydrophobic, oleophobic and have extremely low surface energies, making them useful blooming agents in processing applications [13]. Fluoropolymers are chemically inert having unique properties of thermal stability and biological acceptability. Consequently, they have been used in numerous applications, from chemical erosion resistant devices to coatings and linings in chemical storage tanks to vascular grafts [13]. Commercial fluoropolymers have been used as coatings and include, for example: (1) a block terpolymer of 65% vinylidene fluoride, 25% tetrafluoroethylene and 10% vinyl ester (e.g. vinyl butyrate) which can be cured by UV-irradiation; (2) tetrafluoroethylene-hydroxyalkyl vinyl ether copolymer which is used in acrylic sheets; (3) fluoroolefin-vinyl ether copolymers, Lumiflon® comprises alternating sequences of fluoroolefin and several specific vinyl monomer units.
Fluoropolymers, such as poly(tetrafluoroethylene) or poly(tetrafluoroethylene-co-hexafluoropropylene), are difficult to process, insoluble in common organic solvents and chemically inert, requiring highly reactive species for surface modification [14]. Perfluorinated ether groups on trifluorovinyl ethers (TFVEs) have been shown to improve the processability of the resulting polymer [15]. Incorporating a hydrocarbon ether group into the fluoromonomer will likely further improve the processability of the resulting polymers; however no one has yet synthesized (or polymerized) the hydrocarbon TFVEs described herein. The hydrocarbon ether group is anticipated to improve the solubility of the resulting poly(TFVE)s in common organic solvents, thereby further expanding the range of applications.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide new fluoromonomers, a method for their production and fluoropolymers produced from the fluoromonomers.
The present invention provides new fluoromonomers having the generic structure: CF
2
═CF(OCH
2
CH
2
)
n
OR where n is an integer and R represents an unsubstituted or inertly substituted hydrocarbyl group. A new method of synthesizing the fluoromonomers is provided. The present invention also relates to new fluoropolymers prepared from any one or combination of the new fluoromonomers and having the generic structure: —[—CF
2
CF{(OCH
2
CH
2
)
n
OR}—]
m
— where n is an integer, m is an integer and R represents an unsubstituted or inertly substituted hydrocarbyl group. The method also relates to new copolymers or terpolymers prepared from the new fluoromonomers alone, the new fluoromonomers and existing fluoromonomers or the new fluoromonomers and existing hydrocarbon monomers.
The present invention provides a fluoromonomer of the following general formula (I), comprising;
CF
2
═CF(OCH
2
CH
2
)
n
OR  (I)
wherein n is an integer greater than or equal to 1 and wherein R represents an unsubstituted or inertly substituted hydrocarbyl group.
The invention also provides a process for synthesis of a fluoromonomer having the following general formula (I),
CF
2
═CF(OCH
2
CH
2
)
n
OR  (I)
wherein n is an integer, and wherein R represents an unsubstituted or inertly substituted hydrocarbyl group, comprising the steps of:
providing an effective alkali metal alkoxide;
mixing tetrafluoroethylene with said alkali metal alkoxide in the presence of an effective phase transfer catalyst at an effective temperature to form a mixture, the phase transfer catalyst being selected from the group consisting of crown ethers and tetraalkylammonium salts; and isolating the fluoromonomer from the mixture.
The invention also provides a fluo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fluoromonomers and method of production, and new... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fluoromonomers and method of production, and new..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluoromonomers and method of production, and new... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3020499

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.