CMOS/MEMS integrated ink jet print head and method of...

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06502925

ABSTRACT:

FIELD OF THE INVENTION
This invention generally relates to the field of digitally controlled printing devices, and in particular to liquid ink print heads which integrate multiple nozzles on a single substrate and in which a liquid drop is selected for printing by thermo-mechanical means.
BACKGROUND OF THE INVENTION
Ink jet printing has become recognized as a prominent contender in the digitally controlled, electronic printing arena because, e.g., of its non-impact, low noise characteristics and system simplicity. For these reasons, ink jet printers have achieved commercial success for home and office use and other areas.
Inkjet printing mechanisms can be categorized as either continuous (CIJ) or Drop-on-Demand (DOD). U.S. Pat. No. 3,946,398, which issued to Kyser et al. in 1970, discloses a DOD ink jet printer which applies a high voltage to a piezoelectric crystal, causing the crystal to bend, applying pressure on an ink reservoir and jetting drops on demand. Piezoelectric DOD printers have achieved commercial success at image resolutions greater than 720 dpi for home and office printers. However, piezoelectric printing mechanisms usually require complex high voltage drive circuitry and bulky piezoelectric crystal arrays, which are disadvantageous in regard to number of nozzles per unit length of print head, as well as the length of the print head. Typically, piezoelectric print heads contain at most a few hundred nozzles.
Great Britain Patent No. 2,007,162, which issued to Endo et al., in 1979, discloses an electrothermal drop-on-demand ink jet printer that applies a power pulse to a heater which is in thermal contact with water based ink in a nozzle. A small quantity of ink rapidly evaporates, forming a bubble, which causes a drop of ink to be ejected from small apertures along an edge of a heater substrate. This technology is known as thermal inkjet or bubble jet.
Thermal ink jet printing typically requires that the heater generates an energy impulse enough to heat the ink to a temperature near 400° C. which causes a rapid formation of a bubble. The high temperatures needed with this device necessitate the use of special inks, complicates driver electronics, and precipitates deterioration of heater elements through cavitation and kogation. Kogation is the accumulation of ink combustion by-products that encrust the heater with debris. Such encrusted debris interferes with the thermal efficiency of the heater and thus shorten the operational life of the print head. And, the high active power consumption of each heater prevents the manufacture of low cost, high speed and page wide print heads.
Continuous inkjet printing itself dates back to at least 1929. See U.S. Pat. No. 1,941,001 which issued to Hansell that year.
U.S. Pat. No. 3,373,437 which issued to Sweet et al. in March 1968, discloses an array of continuous ink jet nozzles wherein ink drops to be printed are selectively charged and deflected towards the recording medium. This technique is known as binary deflection continuous ink jet printing, and is used by several manufacturers, including Elmjet and Scitex.
U.S. Pat. No. 3,416,153, issued to Hertz et al. in December 1968. This patent discloses a method of achieving variable optical density of printed spots, in continuous inkjet printing. The electrostatic dispersion of a charged drop stream serves to modulatate the number of droplets which pass-through a small aperture. This technique is used in ink jet printers manufactured by Iris.
U.S. Pat. No. 4,346,387, entitled METHOD AND APPARATUS FOR CONTROLLING THE ELECTRIC CHARGE ON DROPLETS AND INK JET RECORDER INCORPORATING THE SAME issued in the name of Carl H. Hertz on Aug. 24, 1982. This patent discloses a CIJ system for controlling the electrostatic charge on droplets. The droplets are formed by breaking up of a pressurized liquid stream, at a drop formation point located within an electrostatic charging tunnel, having an electrical field. Drop formation is effected at a point in the electrical field corresponding to whatever predetermined charge is desired. In addition to charging tunnels, deflection plates are used to actually deflect the drops. The Hertz system requires that the droplets produced be charged and then deflected into a gutter or onto the printing medium. The charging and deflection mechanisms are bulky and severely limit the number of nozzles per print head.
Until recently, conventional continuous inkjet techniques all utilized, in one form or another, electrostatic charging tunnels that were placed close to the point where the drops are formed in the stream. In the tunnels, individual drops may be charged selectively. The selected drops are charged and deflected downstream by the presence of deflector plates that have a large potential difference between them. A gutter (sometimes referred to as a “catcher”) is normally used to intercept the charged drops and establish a non-print mode, while the uncharged drops are free to strike the recording medium in a print mode as the ink stream is thereby deflected, between the “non-print” mode and the “print” mode.
Typically, the charging tunnels and drop deflector plates in continuous ink jet printers operate at large voltages, for example 100 volts or more, compared to the voltages commonly considered damaging to conventional CMOS circuitry, typically 25 volts or less. Additionally, there is a need for the inks in electrostatic continuous ink jet printers to be conductive and to carry current. As is well-known in the art of semiconductor manufacture, it is undesirable from the point of view of reliability to pass current bearing liquids in contact with semiconductor surfaces. Thus the manufacture of continuous ink jet print heads has not been generally integrated with the manufacture of CMOS circuitry.
Recently, a novel continuous inkjet printer system has been developed which renders the above-described electrostatic charging tunnels unnecessary. Additionally, it serves to better couple the functions of (1) droplet formation and (2) droplet deflection. That system is disclosed in the commonly assigned U.S. Pat. No. 6,079,821 entitled CONTINUOUS INK JET PRINTER WITH ASYMMETRIC HEATING DROP DEFLECTION filed in the names of James Chwalek, Dave Jeanmaire and Constantine Anagnostopoulos, the contents of which are incorporated herein by reference. This patent discloses an apparatus for controlling ink in a continuous ink jet printer. The apparatus comprises an ink delivery channel, a source of pressurized ink in communication with the ink delivery channel, and a nozzle having a bore which opens into the ink delivery channel, from which a continuous stream of ink flows. Periodic application of weak heat pulses to the stream by a heater causes the ink stream to break up into a plurality of droplets synchronously with the applied heat pulses and at a position spaced from the nozzle. The droplets are deflected by increased heat pulses from the heater (in the nozzle bore) which heater has a selectively actuated section, i.e. the section associated with only a portion of the nozzle bore. Selective actuation of a particular heater section, constitutes what has been termed an asymmetrical application of heat to the stream. Alternating the sections can, in turn, alternate the direction in which this asymmetrical heat is supplied and serves to thereby deflect ink drops, inter alia, between a “print” direction (onto a recording medium) and a “non-print” direction (back into a “catcher”). The patent of Chwalek et al. thus provides a liquid printing system that affords significant improvements toward overcoming the prior art problems associated with the number of nozzles per print head, print head length, power usage and characteristics of useful inks.
Asymmetrically applied heat results in stream deflection, the magnitude of which depends on several factors, e.g. the geometric and thermal properties of the nozzles, the quantity of applied heat, the pressure applied to, and the physical, chemical and thermal properties of the ink. Although solvent-based (particularly alco

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

CMOS/MEMS integrated ink jet print head and method of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with CMOS/MEMS integrated ink jet print head and method of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and CMOS/MEMS integrated ink jet print head and method of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3019371

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.