Method and apparatus for measuring volume flow and area for...

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S453000, C600S454000, C600S456000, C073S861250

Reexamination Certificate

active

06544181

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to methods and apparatus for utilizing an ultrasonic pulsed wave Doppler signal to measure the instantaneous area of a dynamic orifice through which blood is passing and/or to measure instantaneous flow rate and flow volume of blood passing through such a dynamic orifice, and more particularly to such methods and apparatus which involves ensonifying a sample volume of blood flow exiting the orifice and identifying the region of such flow which is substantially laminar.
BACKGROUND OF THE INVENTION
Ultrasound, and more specifically the frequency range from 1 MHz to 5 MHz, is used for real-time imaging of the beating heart. In the human heart, the efficiency of getting blood pumped through the body is dependent on a series of four one-way valves, each separating the two contracting chambers of the heart, which valves are prone to a variety of diseases, often times resulting in their inability to close properly. Ultrasound, through the use of the Doppler concept, is able to obtain information pertaining to blood flow within the heart and in the vicinity of the valves for diagnostic purposes, ultrasound having become the most important noninvasive diagnostic technique for cardiovascular disease. However, the use of noninvasive ultrasound techniques to quantify pathologic backflow associated with valvular heart disease, other cardiac pathologies such as inter-septal shunting and other blood flows through dynamic orifices of unknown area has been an elusive medical goal for many years.
While for the purpose of this discussion, focus will be on valvular regurgitation, that is the pathologic backflow of blood through a one-way valve when in the closed state, which is a serious, and at times life-threatening, condition common in virtually all acquired and congenital heart disease, the invention is by no means limited to this application, and some other applications will be discussed later.
Leakage of one or more valves is caused by various diseases which prevent the leaflets of the valve from closing sufficiently, thereby creating a lesion called a regurgitant orifice. There is a need to accurately measure the volume of regurgitation (reverse blood flow) as a guide both to diagnosis and to therapy, especially now that valve repair techniques allow interventions to be considered earlier in the disease before dilation of the chambers (atria and ventricles) and subsequent heart failure occur. Current uncertainties regarding the natural history of the valve disease and the optimal timing of surgery are compounded by a limited ability to measure the basic lesion. Noninvasive procedures for quantification of regurgitant volume based on ultrasound do exist, but are subject to limitations that include: inaccurate diagnosis of lesion severity resulting from indirect measurements, multiple step procedures prone to error, and limiting assumptions about the flow associated with the lesion. In fact, there is currently no truly satisfactory method for noninvasive quantification, and even routine invasive methods, being costly and potentially risky, are only semi-quantitative. Those invasive methods are based on direct catheterization of the heart that allows obtaining information about flow, volume, pressure, etc.
The fundamental problem in using noninvasive ultrasound is that Doppler measures the velocity, not the desired volume, of regurgitant blood flow. Therefore, in order to determine volume of blood passing through an orifice, for example the regurgitant orifice of a diseased heart valve, the area of flow, also referred to as the effective orifice area, has to be known. All methods to date have failed to measure the effective orifice area accurately because of the complex shape and dynamic changes of this area throughout the period of flow.
A potential solution is to use the backscattered acoustic power measurements of the received spectral Doppler signal as a measure of the area of flow. It is well known that each frequency component of the Doppler spectrum provides a measurement of acoustic power that is proportional to the volume of scatterers moving through the Doppler ultrasound beam at the velocity corresponding to the Doppler frequency. It follows that velocity times power, integrated over the entire velocity spectrum, should then be proportional to the volume flow rate Q• of all scatterers (mainly red blood cells) passing through the ultrasound beam, since the blood volume is related to the concentration of red blood cells by way of the hematocrit.
This Doppler power principle holds only for laminar flow and was applied to flow in vessels but it has long been assumed that it cannot be applied to regurgitant jets, that is jets comprised of the regurgitant flow of blood, since the assumption is that the jet contains turbulent eddies which are believed to increase the backscattered power. In addition, entrainment of blood into the jet can contribute to the overestimation of the actual flow through the orifice.
While the problems of measuring flow volume and/or orifice area for a dynamic orifice through which blood flows is a particular problem when measuring regurgitant flow through a heart valve, similar problems arise in measuring valvular stenosis, septal defects with shunt flow, and peripheral vascular disease with vessel obstruction. In these and other applications, a need exists for an improved noninvasive method and apparatus for measuring flow volume and/or orifice area for a dynamic orifice having blood flow therethrough, which technique does not suffer the limitations discussed above for existing methodologies.
SUMMARY OF THE INVENTION
In accordance with the above, a method and apparatus are provided for obtaining instantaneous area measurements for a dynamic orifice through which blood is flowing in at least one direction. The technique involves ensonifying a thin sample volume of blood flow exiting the orifice, which volume is in a region of flow which is substantially laminar, with an ultrasonic pulsed Doppler signal; receiving backscattered signal from blood within the sample volume; forming a power-velocity spectrum from the received backscattered signal; and forming the power integral of the laminar flow from the spectrum, this power integral being proportional to an instantaneous cross-sectional area of the orifice. A time profile of instantaneous areas of flow for the orifice may be obtained by repetitively performing the laminar flow power integral measurement for successive time intervals. The portion of laminar flow in the power velocity spectrum is preferably determined. For preferred embodiments, the sample volume is at the vena contracta of flow exiting the orifice. The vena contracta is the smallest cross-sectional area traversed by flow just beyond the orifice, it being found that flow is substantially laminar at the vena contracta, this vena contracta being the region where entrainment of flow turbulence is at its minimum. For preferred embodiments, the ultrasonic Doppler signal is electronically steered and focused to the vena contracta and is preferably wide enough so as to fully ensonify the vena contracts. The electronic steering and focusing may be performed by moving the ultrasound signal through blood flow exiting the orifice, and detecting a Doppler spectral display and/or audio output, the signal being at the vena contracta when the Doppler signal consists primarily of laminar flow. To assure that only signal from laminar flow is utilized in performing the power integral calculation, the power velocity spectrum is preferably smoothed to eliminate the effects of any aberrations therein, and the velocity for peak power is determined for each time interval. A lower velocity of laminar flow is then determined as being a selected velocity, for example the maximum velocity, which is less than the velocity at peak power where the power is at a selected percentage of the peak power, and an upper velocity of laminar flow is determined which is a selected velocity, for example a minimum velocity, greater than the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for measuring volume flow and area for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for measuring volume flow and area for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for measuring volume flow and area for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3013151

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.