Cytoprotective compounds

Organic compounds -- part of the class 532-570 series – Organic compounds – Fatty compounds having an acid moiety which contains the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C554S056000, C554S078000, C554S103000, C554S108000, C554S109000, C554S110000

Reexamination Certificate

active

06600059

ABSTRACT:

FIELD OF THE PRESENT INVENTION
The present invention relates to compositions and methods for protecting mammalian cells from injury due to intrinsic membrane lysis, oxidation and/or invasion by destructive agents. In particular the present invention relates to compositions and methods for treating against and/or prophylactically inhibiting the injury causation. Even more particularly, the present invention relates to bioactive agents and the use thereof for treating or prophylactically inhibiting phospholipase mediated injury, injury due to oxidation, and inflammation. In a specific sense the present invention provides agents for preventing and/or treating inflammation and cell destruction in mammalian tissue and for protection and preservation of biologic material derived from animals, humans and plants such as food and tissue samples. In a very specific sense, this invention provides compositions that are inhibitors of phospholipase and methods of making these compositions.
BACKGROUND OF THE INVENTION
The base structure of all living organisms is the cell which is structurally defined by its membranous lipoprotein envelope. The membranous network that holds the cell together maintains the ionic balance and provides the receptors for hormones and neurotransmitters that enable a cell to interact with its environment. This is pertinent to interaction with neighboring cells which enable isolated cells, tissues, or whole organisms to survive as both independent units and as participants in cellular interactions, in vitro and in vivo.
External factors which govern cell function, renewal, reproduction and death act via their effects on the phospholipid bilayer and proteins of the cell membrane. This controls the receptor-mediated signals and ionic fluxes which govern cell responsiveness and survival. Damage to the cell membrane with particular emphasis on lipid peroxidation, membrane oxidation and the action of phospholipases, affects resistance to injury, repair and host responses to environmental change and ionic and osmotic integrity.
Pathological events in a host under clinical circumstances can result in cellular insult, leading to loss of membrane integrity. The events are mediated by factors which digest and destroy cell membrane and propagate an injury by producing a cascade of cell membrane changes. By interfering with the cascade of external and internal events involving membrane integrity and toxic changes which lead to cell death, injury can be prevented, modified or reversed. This has been a major role of anti-inflammatory agents in the past.
The most important presently used clinically effective anti-inflammatory drugs include the corticosteroids and the non-steroidal anti-inflammatory drugs (NSAIDs). Corticosteroids inhibit the activity of cell phospholipases among other actions. NSAIDs inhibit the metabolism by cyclooxygenase of arachidonic acid released by phospholipases. These drugs act to control inflammation and to minimize cell injury by regulating the breakdown of phospholipids. These drugs also affect the action of the products of phospholipid breakdown leading to the formation of prostaglandins and leukotrienes which are produced in increased quantities in inflammation and promote cell dysfunction and injury.
In addition, cellular and extracellular phospholipases may be activated by the generation of oxygen free radicals. This can establish a damaging cycle as phospholipase activation can release free radicals which, in turn, activate more phospholipases. In this regard, free radicals are produced from the fatty acids which are released by the action of phospholipases and then converted to prostaglandins and leukotrienes by cyclooxygenase and lipoxygenase enzymes with oxygen free radical production as a by product. Fatty acids and free radicals are known to be prime mediators in the cascade of reactions that result in membrane injury, cell death and inflammation. Phospholipase A2 (PLA
2
), a key enzyme in the metabolism of phospholipid, can promote fatty acid release. PLA
2
may be activated by a variety of factors involving hormonal, neural, metabolic, or immunologic pathways.
One of the hallmarks of inflammation and cell injury is the breakdown of cellular membrane phospholipid. Phospholipids are the major structural building blocks of the cell membrane; they give rise to the barrier-structural and functional properties of membranes and their integrity is crucial to normal cell responsiveness and function. Phospholipid changes in cell membrane integrity, particularly changes in fatty acids at the 2 position, alter the fluidity of cell membranes, cell receptor function and the availability of cellular contents to the external environment. The breakdown of phospholipid membranes results in lysis of cells, produces holes in the cell membrane, affects ion channels and membrane receptors which destroy cellular integrity and functional responses.
During inflammation, phospholipases, from whatever source, that are normally under the control of natural suppressor systems, are activated to degrade membrane phospholipid which, in turn, generates oxygen free radicals. PLA
2
is a key enzyme which is activated in inflammation to metabolize substrate phospholipids and release free fatty acids. These fatty acids (i.e., arachidonate) released by PLA
2
are coverted to potent biologically active metabolites, lysophospholipids, prostaglandins, and leukotrienes. These are themselves substrates for other enzymes leading to the production of thromboxanes, platelet activating factor and other substances, with the concomitant generation of oxygen free radicals.
Phospholipases, particularly PLA
2
, as membrane targeted enzymes, play an important role since expression of their activity results in further production of inflammatory mediators leading to membrane injury which propagates damage within the cell itself or to adjacent tissue. Thus, the spread of injury from the initial site to contiguous or distant sites can be promoted by the activation and/or release of PLA
2
.
In addition to the intrinsic membrane-related tissue breakdown via the activation of PLA
2
, phospholipases, and particularly PLA
2
, are part of the normal defense system of the body. PLA
2
is found in human white blood cells (WBCs). WBCs play a role in resisting infection, but when these cells are mobilized to ward off injury and infection, PLA
2
is released from adherent and circulating WBCs and produces local tissue activation which can increase the extent of initial injury. In addition, YWBCs adhere to blood vessel walls where they release enzymes such as PLA
2
. WBCs also generate free radicals such as superoxide, in large quantities, and thus promote damage to the vascular endothelium, lung alveoli or to tissue sites contiguous with WBC infiltration or concentration. Where inflammation is found, WBCs are usually present in abundance and the WBCs adhere to vascular endothelium, with subsequent release and activation of PL A
2
resulting in damage to vascular integrity during shock and ischemia. Thus, in spite of being a prime defense system of the body against infection, WBCs can also damage the body by propagating injury and inflammation.
A classical description of inflammation is redness and swelling with heat and pain. Inflammation has been defined as the reaction of irritated and damaged tissues which still retain vitality. Inflammation is a process which, at one level, can proceed to cell death, tissue necrosis and scarring. At another level, inflammation can be resolved with a return to normalcy and no apparent injury or with minimal changes, i.e., pigmentation, fibrosis or tissue thickening with collagen formation related to healing and scarring.
Microscopically, inflammation has been described as: (1) atony of the muscle coat of the blood vessel wall; (2) endothelial adherence of inflammatory cells followed by migration of these cells from the vascular space into tissue.
The events described above are often mediated by phospholipase activation, followed by fatty acid release and the formation o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cytoprotective compounds does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cytoprotective compounds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cytoprotective compounds will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3010060

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.