Measurement relating to human body

Surgery – Diagnostic testing – Cardiovascular

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S301000, C128S925000

Reexamination Certificate

active

06540686

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to health care and sports, particularly to applications which aim to determine variables relating to human energy metabolism and/or glucose content in a human body.
BACKGROUND OF THE INVENTION
The human energy economics mainly comprises carbohydrates, fats and proteins. How these are used and proportioned depends on bodily condition, the amount of nutrients in use and the intensity of exercise to be performed. The bodily condition can be studied e.g. through activity, temperature and blood pressure. The exercise stress intensity, in turn, can be measured e.g. as a heart rate frequency with respect to time, which gives a temporary, rough estimate of the exercise stress. In connection with various diseases, such as diabetes, it is important to determine the bodily energy balance and glucose content in order to find suitable treatment. Furthermore, the effect of exercise stress level in athletes on the energy balance and energy metabolism is important as regards planning a suitable diet.
The known methods for determining energy metabolism levels are based on measuring the heart rate during an exercise. Energy consumption has been estimated e.g. by an equation according to Formula (1):
EE=a+b*HR
, wherein  (1)
EE describes the level of energy consumption, a and b are constants by which the linear dependency between heart rate HR and EE is determined. The known method has serious disadvantages. Energy consumption calculated by the method according to Formula (1) does not take any previous cumulative exercise stress nor the quality thereof into account. The linear model is used because the energy consumption measurements being currently used are mainly based on laboratory measurements during ascending exercise stress or using constant exercise stress at a certain work load.
BRIEF DESCRIPTION OF THE INVENTION
An object of the invention is to provide an improved method for determining human energy metabolism. A further object of the invention is to provide an improved method for estimating a glucose content in a human body. This is achieved by a method disclosed in the following. The method is a method for measuring human energy metabolism, in which method information on a person's heart rate is measured in the form of one or more heart rate parameters. The method comprises forming, by means of a mathematical model modelling human metabolism, the person's energy metabolism level as an output parameter of the model using as input parameters of the model said one or more heart rate parameters and one or more physiological parameters each describing a physiological characteristic of the person, and using the output parameter of the model for estimating the person's energy metabolism.
The invention also relates to a method for measuring the amount of glucose in a human body, in which method information on a person's heart rate is measured in the form of one or more heart rate parameters. The method comprises supplying one or more heart rate parameters and one or more physiological parameters describing a physiological characteristic of the person as input parameters into a mathematical model modelling human glucose consumption, by means of which input parameters one or more of the following are formed as an output parameter of the model: the person's glucose content level, amount of glucose left in the person's body, which said one or more output parameters are used for estimating the amount of glucose used and/or the amount of glucose left in the body.
The invention also relates to a heart rate measurement arrangement comprising a calculating unit comprising a mathematical model arranged to form a person's energy metabolism level as an output parameter of the model using as input parameters of the model one or more heart rate parameters and one or more physiological parameters each describing a physiological characteristic of the person, the heart rate measurement arrangement further comprising display means for displaying information formed in the calculating unit.
The invention also relates to a heart rate measurement arrangement comprising a calculating unit comprising a mathematical model arranged to form, using as input parameters of the model one or more heart rate parameters and one or more physiological parameters each describing a physiological characteristic of a person, one or more of the following as an output parameter of the model: the person's glucose content level, amount of glucose left in the person's body, which heart rate measurement arrangement further comprises display means for displaying information formed in the calculating unit.
Preferred embodiments of the invention are disclosed in the dependent claims.
The invention thus relates to a method and apparatus for measuring human energy metabolism. The method of the invention is preferably implemented by a mathematical model which is based on the physiological facts of the human energy metabolism. In connection with the description of the invention, a mathematical model refers to a set of mathematical procedures and rules that are employed to form output parameter values from input parameter values. The mathematical procedures include arithmetic operations, such as adding, subtracting and multiplying. The mathematical model may of course also be implemented as a table or a database, in which case an output parameter value corresponding to a particular input parameter is read directly from the database. In an embodiment of the invention, the level of energy metabolism, i.e. the amount of energy consumed, is given as output variables of the mathematical model. Energy consumption can be determined as energy/time unit, i.e. kcal/min. In a preferred embodiment of the invention, the quality of energy metabolism, which means that the energy used is divided into different forms of energy, such as carbohydrates, fats and proteins, is given as output parameters of the model. In a preferred embodiment of the invention, the amount of energy left in the body is given as an output variable. In an embodiment, the quality of the remaining energy divided into different energy components is given as an output parameter. More than one output parameter of the output parameters disclosed above may also be simultaneously given as an output parameter of the model.
The mathematical model according to an embodiment of the invention returns as its output parameter one or more of the following: the glucose used by the body or the amount of glucose left in the person's body.
The set of input parameters of both the model modelling energy metabolism and the model modelling glucose consumption may vary greatly. In the solution of the invention, at least one or more heart rate parameters to be measured from heart rate information are introduced as input parameters into the model. A heart rate parameter may be e.g. heart rate, standard deviation of the heart rate, rate of change of the heart rate or other such variable measurable from heart beats. Furthermore, at least one physiological parameter describing the physiology of the user is introduced as input information into the model. The physiological parameters include height, weight, age and sex. The model can be made more accurate by using one or more optional parameters as input parameters of the model. In a preferred model, the amount of energy supplied to the body is introduced as an input parameter into the model. The amount of supplied energy refers to energy that has been consumed by eating or drinking or administered e.g. through an injection. In a preferred embodiment, the amount of energy supplied to the body can be divided into carbohydrates, fats and proteins according to the energy quality. An optional input parameter is body temperature, which can be measured e.g. from the skin by a thermometer. Furthermore, an optional input parameter of the model is the surrounding temperature, which affects the metabolism level in the same way as the body's own temperature,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Measurement relating to human body does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Measurement relating to human body, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Measurement relating to human body will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3004611

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.