Substrate for array printing

Stock material or miscellaneous articles – Composite – Of quartz or glass

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S426000, C428S446000, C428S447000, C428S141000, C501S066000

Reexamination Certificate

active

06461734

ABSTRACT:

FIELD OF INVENTION
The invention relates to high density biological and chemical arrays and specifically to an improved substrate material onto which arrays are deposited.
BACKGROUND OF INVENTION
Oligonucleotide hybridization is widely used to determine the presence in a nucleic acid of a sequence that is complimentary to the oligonucleotide probe. In many cases, this provides a simple, fast, and inexpensive alternative to conventional sequencing methods. Hybridization does not require nucleic acid cloning and purification, carrying out base-specific reactions, or tedious electrophoretic separations. Hybridization of oligonucleotide probes has been successfully used for various purposes, such as analysis of genetic polymorphisms, diagnosis of genetic diseases, cancer diagnostics, detection of viral and microbial pathogens, screening of clones, genome mapping and ordering of fragment libraries.
An oligonucleotide array is comprised of a number of individual oligonucleotide species tethered to the surface of a solid support in a regular pattern, each one in a different area, so that the location of each oligonucleotide is known. An array can contain a chosen collection of oligonucleotides, e.g., probes specific for all known clinically important pathogens or specifics for all known sequence markers of genetic diseases. Such an array can satisfy the needs of a diagnostic laboratory. Alternatively, an array can contain all possible oligonucleotides of a given length n. Hybridization of a nucleic acid with such a comprehensive array results in a list of all its constituent n-mers, which can be used for unambiguous gene identification (e.g., in forensic studies), for determination of unknown gene variants and mutations (including the sequencing of related genomes once the sequence of one of them is known), for overlapping clones, and for checking sequences determined by conventional methods. Finally, surveying the n-mers by hybridization to a comprehensive array can provide sufficient information to determine the sequence of a totally unknown nucleic acid.
Oligonucleotide arrays can be prepared by synthesizing all the oligonucleotides, in parallel, directly on the support, employing the methods of solid-phase chemical synthesis in combination with site-directing masks as described in U.S Pat. No. 5,510,270. Using an efficient photolithographic technique, miniature arrays containing as many as 10
5
individual oligonucleotides per cm
2
of area have been demonstrated.
Another technique for creating oligonucleotide arrays involves precise drop deposition using a piezoelectric pump as described in U.S Pat. No. 5,474,796. The piezoelectric pump delivers minute volumes of liquid to a substrate surface. The pump design is very similar to the pumps used in ink jet printing. This picopump is capable of delivering 50 micron and 65 picoliter droplets at up to 3000 Hz and can accurately hit a 250 micron target. When energized, a microdroplet is ejected from the pump and deposited on the array plate at a functionalized binding site.
Further approaches to forming an array involve repeatedly contacting a substrate surface with typographic pins holding droplets and using ink jet printing mechanisms to lay down an array matrix.
In choosing a substrate for use as a support for the attachment of oligonucleotides, several characteristics must be considered. First, the surface must be compatible with the method of detection of hybridization. Spectroscopic, chemiluminescent and fluorescent detection techniques are the detection techniques of choice for DNA research involving high density arrays. In order to use these techniques, it is desirable that the substrate be optically transparent. A second important characteristic is that the linkage of the penultimate oligonucleotide to the surface have high chemical stability, at least equal to that of the polyphosphate backbone in DNA.
The substrates that support the arrays are conventionally 1 by 3 inch slides made from soda lime glass and coated with a polar silane, which contains for example an amino group suitable for anchoring solid phase oligonucleotide synthesis, and specifically for cross-linking DNA molecules. Photoresist or masking techniques may be used to make patterned derivitization on such a surface. In this way, one can achieve patterned wetting sites on an otherwise nonwetting surface, as well as patterned functionalized sites on an otherwise nonfunctionalized surface.
One problem with the conventional use of soda lime glass as a substrate for the support of high density arrays is the presence of particulate contamination that is common in the production of such low grade glass. Particulate contamination is of special concern while dealing with samples on such small scale as 10,000 target sites per slide. Further, the sodium contained in soda lime glass can be easily mobilized to exit the glass. Hazing is a result which negatively affects the transparency of the glass and consequently disturbs the detection techniques previously mentioned. Finally, it is difficult to obtain a uniform functionalized coating, such as an amino functional silane coating, on the surface of the slides now in conventional use. Without a uniform coating, oligonucleotide attachment is uneven, leading to varied and unreliable detection results.
SUMMARY OF INVENTION
An improved substrate for use in the printing or the synthesis of biological and chemical arrays is disclosed. The substrate is a substantially flat support made from a borosilicate or boroaluminosilicate glass.
DETAILED DESCRIPTION OF THE INVENTION
The functionalized coating of the surface of glass substrates with amino functionalized amines, for example, is the backbone of high density array manufacture. A substantially even coating of the functionalized coating, as discussed above, is required. It has been discovered that using a known glass that can be manufactured by known methods to obtain a specific smoothness has important uses as a biological substrate.
The substrate of the present invention, which preferably takes the form of a 1 inch×3 inch slide, is made from a borosilicate or boroaluminosilicate glass. In one preferred embodiment, the substrate glass (1737 LCD glass available from Corning Incorporated) has a composition, in terms of mole percent, consisting essentially of:
SiO
2
67.6
BaO
4.31
Al
2
O
3
11.4
MgO
1.31
B
2
O3
8.53
SrO
1.29
CaO
5.2
As
2
O
3
0.39
In other preferred embodiments (e.g., commercially designated 7059 LCD glass from Corning Incorporated), the slide is made from several suitable boroaluminosilicate glass compositions that are listed in commonly assigned U.S. Pat. No. 5,374,595, A glass described in U.S. Pat. No. 5,374,595. has a composition, in mole percent, consisting essentially of:
SiO
2
64-70
Y
2
O
3
0-5
Al
2
O
3
9.5-14 
MgO
0-5
B
2
O
3
 5-10
CaO
 3-13
TiO
2
0-5
SrO
  0-5.5
Ta
2
O
5
0-5
BaO
2-7
Nb
2
O
5
0-5
MgO + CaO + SrO + BaO
10-20
Generally, the preferred glass compositions for the substrate slide will have a sodium oxide, or any other alkali metal oxide, content of less than about 15 weight percent.
The slides may be cut from a sheet of glass that has been formed by a fusion draw process as described in U.S. Pat. Nos. 3,338,696 and 3,682,609, which are both incorporated herein by reference. This disclosed process provides for the manufacture of high liquidus viscosity glasses, such as borosilicates or boroaluminosilicates, in sheets having an extremely even and smooth surface. Each slide has a uniform surface smoothness, such that the average roughness (Ra) of a major or top surface, as taken on a 20 micron by 20 micron scan employing an atomic force microscope (AFM), is less than about 10 nanometers, and preferably less than 10 angstroms. Even more preferably, the average roughness is less than 5 angstrorns. As used herein, the “top surface” is the portion of the slide onto which a binding entity array is synthesized, deposited, or otherwise attached. When used to produce 1737 LCD glass, for example, the fusion draw

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Substrate for array printing does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Substrate for array printing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Substrate for array printing will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2994872

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.