Methods for identifying compounds for inhibiting of...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S021000, C424S094100, C424S094600

Reexamination Certificate

active

06500610

ABSTRACT:

BACKGROUND OF THE INVENTION
This application claims priority under 35 U.S.C. §120 to U.S. Patent App. Ser. Nos. 08/866,027 and 09/046,739, filed May 30, 1997 and Mar. 24, 1998, respectively.
This invention relates to the use of one or more forms of phosphodiesterase type 2 (“PDE2”) and phosphodiesterase type 5 (“PDE5”) and/or protein kinase G to identify compounds useful for the treatment and prevention of pre-cancerous and cancerous lesions in mammals, and to pharmaceutical compositions containing such compounds, as well as to therapeutic methods of treating neoplasia with such compounds.
Currently, non-surgical cancer treatment involves administering one or more highly toxic chemotherapeutics or hormonal therapies to the patient after her cancer has progressed to a point where the therapeutic benefits of chemotherapy/hormonal outweigh its very serious side effects. Such side effects are well known to any oncologist, and vary from drug to drug. However, standard chemotherapeutics are typically used only for short periods of time, often alternating chemotherapy with periods off treatment, so as not to overwhelm the patient with drug side effects. Thus, given the risk-benefit trade-off, side effects typically preclude starting chemotherapy when patients exhibit precancerous lesions, or continuing chemotherapy or hormonal therapy on a chronic basis after frank cancer has been eliminated in an attempt to prevent its re-occurrence.
Beginning a decade or so ago, a glimmer of hope began to appear from an unexpected source: non-steroidal anti-inflammatory drugs (“NSAIDs”). Cancer and precancer research is replete with publications that describe various biochemical molecules that are over-expressed in neoplastic tissue, leading one group after another to research whether specific over-expressed molecules are responsible for the disease, and whether, if such over-expression were inhibited, neoplasia could be alleviated. For example, in familial adenomatous polyposis (“FAP”), Waddell in 1983 (Waddell, W. R. et al., “Sulindac for Polyposis of the Colon,”
Journal of Surgical Oncology
, 24:83-87, 1983) hypothesized that since prostaglandins were over-expressed in such polyps, non-steroidal anti-inflammatory drugs (“NSAIDs”) should alleviate the condition because NSAIDs inhibited prostaglandin synthetase PGE
2
) activity. Thus, he administered the nonsteroidal anti-inflammatory drug (“NSAID”) sulindac (an inhibitor of PGE
2
) to several FAP patients. Waddell discovered that polyps regressed and did not recur upon such therapy. PGE
2
inhibition results from the inhibition of cyclooxygenase (COX) by NSAIDs. The success by Waddell with sulindac and the PGE
2
/COX relationship seemingly confirmed the role of two other biochemical targets —PGE
2
and COX—in carcinogenesis, and the subsequent literature reinforced these views.
The glimmer of hope for patients suffering from neoplasia was that sulindac certainly exhibited far fewer side effects than conventional chemotherapeutics or hormonals, and opened up the possibility of treating cancer at earlier stages of the disease, and for longer periods of time as compared with conventional chemotherapeutics. However, such a hope had to be tempered with the open question of whether a compound such as sulindac could be used to treat frank cancer, given that Waddell had only administered sulindac to patients with a pre-cancerous condition, FAP.
That hope was also tempered by NSAIDs own sets of side effects. Sulindac and other NSAIDs when chronically administered, aggravate the digestive tract where PGE
2
Plays a protective role. In addition, when taken chronically, they exhibit side effects involving the kidney and interference with normal blood clotting. As Waddell unfortunately experienced, some of his sulindac patients stopped taking drug because of side effects (see Waddell, W. R. et al., “Sulindac for Polyposis of the Colon,”
The American Journal of surgery
, 157: 175-79, 1989), most likely returning to additional surgical interventions to control polyp formation. Thus, for neoplasia patients, such drugs are not a practical chronic treatment, e.g., for FAP, sporadic polyps or men post-prostatectomy with rising PSAs (a rising PSA in such men indicates the recurrence of disease, which may not yet present as a frank, visible cancer). These side effects also limit NSAIDs'use for any other neoplasia indication requiring long-term drug administration. More recently, some have suggested that the COX-2 specific NSAIDs such as celecoxib be used. However, the renal and other side effects of such compounds are believed to limit the dosing and length of treatment with such compounds for long-term anti-neoplastic indications. In addition, recently published data indicate that very high doses are needed for drugs like celecoxib to achieve a marginal effect on polyps in only pre-defined regions of colorectum. Perhaps more significant to colon cancer treatment is that it has been reported that certain colonic neoplasias (e.g., HCT-116) do not express COX-2, and that such inhibitors are ineffective against such neoplasias (see, Sheng, et al., “Inhibition of Human Colon Cancer Cell Growth By Selective Inhibition of Cyclooxygenase-2,” J. Clin. Invest., 99(9):2254-9, 1997).
Recent discoveries have lead scientists away from the COX/PGE
2
targets, since those targets may not be the primary (or perhaps even secondary targets) to treat neoplasia patients successfully on a chronic basis. Pamukcu et al., in U.S. Pat. No. 5,401,774, disclosed that sulfonyl compounds, that have been reported to be practically devoid of PGE2 and COX inhibition (and therefore not NSAIDs or anti-inflammatory compounds) unexpectedly inhibited the growth of a variety of neoplastic cells, including colon polyp cells. These sulfonyl derivatives have proven effective in rat models of colon carcinogenesis, and one variant (now referred to as exisulind) has proven effective in human clinical trials with FAP patients, and even more remarkably has shown effect in a frank cancer: prostate cancer itself, in a controlled clinical study presented below. Furthermore, very recent research has convincingly established that COX I and/or COX II are not expressed substantially in all neoplasias, diminishing the hope that a COX I or COX II specific inhibitor would be broadly therapeutically useful in neoplasia treatment (see, Lim et al., “Sulindac Derivatives Inhibit Growth and Induce Apoptosis in Human Prostate Cancer Cell Lines,” Biochem. Pharmacology, Vol. 58, pp. 1097-1107 (1999) in press).
Thus, like so many other proteins over-expressed in neoplasias, PGE
2
/COX over-expression may not be a cause of some neoplasias, rather a consequence of some of them. But the combination of such discoveries, however, has raised the question about how do compounds such as exisulind (that have a range of activity against both COX and non-COX expressing neoplasias) act? What do such compounds do to neoplastic cells?.
Piazza, et al. (in U.S. patent application Nos. 08/866,027 and 09/046,739) discovered that compounds (such as exisulind) inhibited cyclic-specific GMP phosphodiesterase (e.g., PDE5), and that other such compounds could be screened using that enzyme, which could lead to the discovery of still other compounds that could be developed and formulated into anti-neoplastic pharmaceutical compositions. Such pharmaceutica cmpositions can be highly anti-neoplastic and can be practically devoid of side effects associated with conventional chemotherapeutics, or even the side effects of COX or PGE2 inhibition, if one wanted to avoid such side effects. In addition, anti-neoplastic cGMP-specific PDE-inhibiting compounds can induce apoptosis (a form of programmed cell death or suicide) in neoplastic cells, but not in normal cells. Thus, such new compounds have become referred to as a new class of antineoplastics known as selective apoptotic anti-neoplastic drugs (“SAANDs”). Accordingly, SAANDs have challenged several matters of conventional wisdom: (1) that anti-neoplastic compounds cannot be effective withou

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for identifying compounds for inhibiting of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for identifying compounds for inhibiting of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for identifying compounds for inhibiting of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2994076

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.