Production of amino-aldehyde-phosphate resins and copolymers

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From aldehyde or derivative thereof as reactant

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S248000, C528S254000, C528S256000, C528S257000, C252S609000, C252S608000, C252S607000

Reexamination Certificate

active

06495655

ABSTRACT:

FIELD
The invention concerns amino-aldehyde-phosphate resins and copolymer and compositions. The invention also concerns their preparation and use. These amino-aldehyde-phosphate resin and copolymers are useful to produce flame retardant resins for use as plastic sheet, molding resins, coating agents, adhesive, casting resins, flame retardant lamates, binder and flame retardant powders.
BACKGROUND
Aminoplasts have been produced for many years, but the production of amino-aldehyde-phosphate resins and copolymers are novel. The production of clear amino-aldehyde-phosphate resins are novel. The aminoplasts are white and must be cured under heat and pressure whereas the amino-aldehyde-phosphates may be produced as a water based, self cured clear, tough, rigid or flexible resinous film which is flame retarded. Whiteside (U.S. Pat. No. 4,968,772) and Austin et al (U.S. Pat. No. 2,244,184) utilized an acid catalyst such as phosphoric acid but they utilized only a sufficient amount to adjust the pH. Whiteside utilized only about 1-2% phosphoric acid in the production of his aminoplast, percentage based on the weight of the aminoplast. This invention utilizes about 20 to 40 percent phosphorus oxyacid based on the weight of the amino-aldehyde-phosphate resin or copolymer.
What is lacking and what is needed are useful, safe and inexpensive flame retardant amino-aldehyde-phosphate resin. What is additionally lacking are amino-aldehyde-phosphate copolymers which are water based and upon drying forms a self cured clear, tough, rigid or flexible resinous film which is flame retarded. What is lacking and what is needed are useful, safe and inexpensive flame retardant amino-aldehyde-phosphate resinous powders and compositions for use as flame retardant in plastics and natural products.
SUMMARY
In one aspect, the invention comprises of the flame retardant amino-aldehyde-phosphate resin. Another aspect of the invention is the amino-aldehyde-phosphate copolymers and compositions. Another aspect of the invention is a process to prepare an amino-aldehyde-phosphate resin by mixing, selectively heating, and reacting the following components at ambient or elevated temperature and at ambient or lowered pressure and in a molar ratio of amino:aldehyde:phosphorus oxyacid of 1-2;1-2:0.5-1:
A) amino compound
B) aldehyde
C) phosphorus oxyacid
F) water, 0 to 200 percent by weight, percentage based on weight of amino compound; under conditions sufficient to prepare the amino-aldehyde phosphate resin. The components may be mixed in any suitable manner at ambient pressure, they may be mixed simultaneous or the amino compound and aldehyde may be mixed and heated to 50-75 degree C., then phosphorus oxyacid is added and reacted to produce a resinous powder or the phosphorus oxyacid is mixed and reacted with the amino compound or aldehyde compound, then the components are mixed together and reacted to produce an amino-aldehyde-phosphate resin. The components may be heat to just below the boiling point of the components when necessary to speed up the reaction and cure the resin. When excess water is present the mixture may be heated under reduced pressure to remove the excess water. The resin may be produced at ambient temperature and pressure.
In another aspect of the invention is a process to prepare the amino-aldehyde-phosphate copolymers, comprising mixing, heating and reacting the following compounds at ambient or elevated temperature and at ambient or reduced pressure and in a ratio of amino+organic compound:aldehyde: phosphorus oxyacid of 1-2:1-2:0.5-1:
A) Amino compound
B) Aldehyde
C) phosphorus oxyacid
D) organic compound that will react with amino compound, aldehyde and/or phosphorus oxyacid, in the amount of 0 to 100 percent, percentage based on the weight of amino compound;
F) water, in the amount of 0 to 200 percent by weight, percentage based on weight of the amino compound;
under conditions sufficient to prepare the amino-aldehyde-phosphate copolymer. Phosphorus oxyacid is mixed and/or reacted with the amino compound and/or aldehyde and/or the organic compound (component D), the components are mixed at ambient or elevated temperature, at ambient or reduced or elevated pressure, and reacted.
In another aspect of the invention is a process to prepare the amino-aldehyde-phosphate resin, comprising of mixing, heating and reacting:
A) amino compound
B) Aldehyde
C) phosphorus oxyacid
E) filler, in the amount of 0 to 200 percent, percentage based on weight of amino compound;
F) water, in the amount of 0 to 200 percent, percentage based on weight of amino compound;
under conditions sufficient to prepare the amino-aldehyde-phosphate. The phosphorus oxyacid is mixed and/or reacted with the amino compound and/or aldehyde then the components are mixed and components A, B and C are reacted.
Another aspect of this invention is to produce a flame retardant compostion by apply the amino-aldehyde-phosphate resin and/or amino-aldehyde-phosphate copolymer and/or amino-aldehyde-phosphate composition into or on a flammable organic material.
COMPONENT A
Any suitable amino compound and its salts with free —NH
2
radicals may be utilized that will react with an aldehyde. Suitable amino compounds, include, but not limited to, urea, partially hydrolyzed urea condensate, buiret, cyanuric acid, cyamelide, melamine, melamine cyanurate, dicyandiamide, guanidine, cyanoguanidine, aminoguanidine, urea-amino condensate such as urea-melamine condensate, urea-dicyandiamide condensate, urea-guanidine condensate, urea-aminoguanidine condensate, aminophosphates with free —NH
2
radicals such as triaminophosphates and diaminophosphates, aminoborates, urea-polyamine condensates, urea-polycarbolic acid condensates, urea-propylene oxide condensates, urea-polyalcohol condensates, urea condensate salt of phosphorus oxyacid with free —NH
2
radicals and mixtures thereof. Urea and urea condensates are the most preferred amino compound. Amino compounds are utilized in an amount to produce an amino: aldehyde:phosphate molar ratio of 1-2:1-2:0.5-1.
COMPONENT B
Suitable aldehydes include, but not limited to, formaldehyde, paraformaldehyde, acetoaldehyde, butyraldehyde, chloral , and other alkyl aldehydes, furfural, benzyl aldehyde acrolein aldehyde, and other aromatic aldehydes. The aldehyde is utilized in an amount to produce an amino:aldehyde:phosphate molar ratio of 1-2:1-2:0.5-1.
COMPONENT C
Suitable phosphorus oxyacid include, but not limited to, Suitable phosphorus compounds include, but not limited to, phosphoric acid, polyphosphoric acid, pyrophosphoric acid, triphosphoric acid, metaphosphoric acid, hydrophosphorous acid, phosphinic acid, phosphinous acid, phosphine oxide, phosphorus trihalides, phosphorus oxyhalides, phosphorus oxide, salts of phosphoric acid with free hydrogen radicals such as mono-metal dihydrogen phosphates, amino dihydrogen phosphate, amine dihydrogen phosphate and alkali metal dihydrogen phosphate, halogenated phosphate-phosphite and their halides, organic phosphonates, phosphites, phosphates and phosphonate esters and acids and mixtures thereof. Phosphoric acid is the preferred phosphorus oxyacid. The phosphorus oxyacid is utilized in an amount to produce an amino:aldehyde:phosphate molar ratio of 1-2;1-2:0.5-1.
COMPONENT D
Any suitable organic compound that will react with any of the components, amino compound, aldehyde and/or phosphorus oxyacid may be used in this invention such as, but not limited to, amines, polyamines, phenol compounds such as phenol, cresol, aminophenol, quinones, aniline, Bisphenol A and resorcinol, vinyl acetate, polyvinyl alcohol furfuryl alcohol, epoxy resins, polyepoxy compounds, polyamides, acetyl resins, acrylic acids, cellulose, carbohydrates, polyisocyanates, lignin, amines, alkylanolamines, polycarboxyl acid and anhydrides, epoxies, polyvinyl acetate, organic isocyanates, imides, amides, sulfamic acid, thiourea, epihalohydrin, thiophenol, ketones, alkyl carbonates, oils, fats, allyl alcohol, alkyl acrylic acids, polyester resins with free —OH or —COOH radicals, sucrose amine polyols

No affiliations

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Production of amino-aldehyde-phosphate resins and copolymers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Production of amino-aldehyde-phosphate resins and copolymers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Production of amino-aldehyde-phosphate resins and copolymers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2992012

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.