Electricity: motive power systems – Automatic and/or with time-delay means
Reexamination Certificate
2001-02-20
2002-12-24
Fletcher, Marlon T. (Department: 2837)
Electricity: motive power systems
Automatic and/or with time-delay means
C318S461000, C318S468000, C318S565000, C318S282000
Reexamination Certificate
active
06498450
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a method of monitoring a partial tightness on movable members, such as for example window panes or movable roof. These components of motor vehicles are provided in increased numbers in the electrical drive which are operatable remotely. Tightness occurs when, for example, wind deflectors which are arranged before the movable roofs are subjected to increased air resistance while traveling with increased traveling speed. In these situations an actuation of removable roof occurs.
Manual bridging functions are provided for electrical drives utilized for actuation of window panes or movable roofs, so that the driven displaceable members at the location of a tightness can be moved by hand over the tightness location. A manual engagement of the operator during driving of a vehicle distracts it and can lead to critical traveling situations, in which the driver may not pay undivided attention to the traffic.
In other embodiments of the window panes or movable roofs, reference runs are provided in the movable systems. The reference runs load not insignificantly the electrical drive, since they have a calibration function. Reference runs moreover are time consuming, and during the reference runs not all operations occur, which later during operation of the window panes or movable roofs can occur.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a method of bridging of partial tightness of movable members, which avoids the disadvantages of the prior art.
In keeping with these objects and with others which will become apparent hereinafter, one feature of present invention resides, briefly stated, in a method of bridging partial tightness of a movable members, in accordance with which an automatic monitoring function is provided, and within a tightness region a releasing force is varied in one or several steps.
With the inventive solution, an automatic bridging function is utilized, which corresponds to the rotary speed course. An automatically operating control operates so that only in the small limited region of the bridging location which is identified as such, the releasing force is increased by a certain amount. When a one-time increase of the releasing force is not sufficient for a certain amount to overcome the tightness location, then it is increased by automatic bridging function in a stepped manner in several starting routines to a maximum value. When with a releasing force below the maximum releasing force, the overcoming of the tightness location is performed, then the releasing force required for overcoming the obstacle is stored in an adaptive storage unit. The maximum value of the releasing force can be preset on the automatic bridging function, so that depending on the application, predetermined maximum releasing forces are provided or can be allowed. Also the step widths at which the reducing force is raised within the starting routine in a stepped manner can be preselected variably for the automatic bridging function.
The stepped increase of the releasing force can be embedded for example in a first run to an obstacle with subsequent reversing of the drive. If the obstacle is located outside of the region in which the tightless location is localized, the drive is reversed. If the tightness location is inside the back window, the releasing force is increased only in the region in which the tightness location is provided. After several starts and runs on the obstacle, a stepped increase of the releasing force in the region of the back window is provided, until the maximum fixed releasing force is achieved.
When the obstacle representing the tightness location is finally overcome without reversing of the electrical drive, the rotary speed adaptation can be adjusted to the changed obstacle. The releasing force which directly overcomes the obstacle or the rotary speed adaptation can be stored in a storage which is associated with the automatic bridging function.
The novel features which are considered as characteristic for the present invention are set forth in particular in the appended claims. The invention itself, however, both as to its construction and its method of operation, together with additional objects and advantages thereof, will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
REFERENCES:
patent: 5166586 (1992-11-01), Yaguchi
patent: 6064165 (2000-05-01), Boisvert et al.
patent: 6347482 (2002-02-01), Takiguchi et al.
Fletcher Marlon T.
Robert & Bosch GmbH
Striker Michael J.
LandOfFree
Method of bridging partial tightness on movable members does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of bridging partial tightness on movable members, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of bridging partial tightness on movable members will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2991702