Engine torque control system based on the dynamic behavior...

Interrelated power delivery controls – including engine control – Transmission control – Continuously variable friction transmission

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C477S097000, C477S109000, C701S058000

Reexamination Certificate

active

06475112

ABSTRACT:

This invention relates to a method for adapting the dynamics of the torque build-up of a motor vehicle to the dynamics of an automatic transmission it drives, which can be designed as continuously variable transmission or continuously variable automatic transmission, by means of pre-conditioning the hydraulic system in the automatic transmission in the sense that the hydraulic pressures be kept within a range from which an increase of the pressures to eventually needed higher pressures is possible in sufficiently short time and by means of reducing the engine dynamics by an external engagement originating from the transmission.
In modern engines of motor vehicles the dynamics of the torque build-up becomes continuously higher. Specially in modern diesel engines for passenger motor vehicles already 60 ms after actuating the accelerator pedal the torque produced thereby can build up on the crankshaft.
The dynamics of an engine cannot be followed by the dynamics of an automatic transmission it drives with the build-up of pressures on clutches in case of a continuously variable automatic transmission or with the build-up of pressures on the adjusting elements for the variator in CVT transmission. Depending on the operating point, starting from which the hydraulic system of the transmission must move, the required contact pressure on the clutches in the case of continuously variable automatic transmissions or frictional elements in the case of continuously variable transmissions cannot be built up with the needed speed in order to cope with the quickly increasing engine torque.
Two method are possible to overcome said disadvantage:
1. Pre-conditioning of the hydraulic system in the automatic transmission for an eventually quickly increasing engine torque, that is, the hydraulic pressures in the hydraulic system of the automatic transmission are kept within a range from which an increase to eventually needed higher pressures can be effected in a sufficiently short time. But this method still has the disadvantage that in low engine torques there is a disadvantage in consumption relative to a pressure level which is based on the actual engine torque and not on an eventually possible engine torque.
2. Reduction of the engine dynamics via an external engagement, that is, the transmission passes on to the engine, for example, via a CAN bus, a signal that only a certain transmission-dependent engine dynamics is admissible.
This method still has the disadvantage of engaging the dynamics of the engine which actually must procure the most dynamic possible and thus sportive impression and has to react as quickly as possible to the driver's requirements.
In the case of a continuously variable transmission, the variator usually is hydraulically controlled, the axial displacement of the cone pulleys meaning a change in volume which must be compensated by the hydraulic system by corresponding flow rate changes in the pair of cone pulleys concerned, since the adjustment occurs under force and pressure control. The change of flow rate to be adjusted by the electrohydraulic control depends here directly on the actual adjustment speed of the pair of cone pulleys. Since the control hydraulics is as a rule supplied via a pump dependent on the engine rotational speed with constructionally predetermined maximum flow rate, there necessarily results also a constructionally fixed limit for the implementable adjusting dynamics of the variator. The variator can be adjusted only as quickly as allowed by the oil flow rate available in the interplay with other control circuits and control loops or consumers.
In the constructional design of the supply pump a part is played, together with ensuring the necessary oil flow rate, aspects such as noise and efficiency both of which act negatively as the size of the pump increases. Based on the variable adjustment speeds of the variator this means that there always exist operating states in which theoretically higher adjustment gradients than allowed by the actual availability of the oil flow rate would momentarily be possible
Another aspect is constituted by the design-conditioned limitations (stability of the parts, limit values for control pressures) on the variator which must always be taken into account.
The Applicant's DE-A 199 08 251 discloses a method which by means of a physical mathematical model continuously calculates in each operating state the actual limit values for the maximum possible adjustment gradients. Here are taken into account the special marginal conditions of the oil supply an design-determined geometric ratios on the variator.
A closed loop control structure adequate therefor is described in the Applicant's DE-A 196 06 311 where a physical mathematical linearization of the control system based on a model is combined by means of a correction member with a linear PID controller, the regulated quantity of which is directly interpreted as direction for the adjustment gradient to be set.
In DE-A 40 37 092 is described a method for control of the torque of an engine of a motor vehicle connected with an automatic transmission driven thereby. With the engine is here associated a control electronic system which, on the basis of rotational speed, load and optionally temperature signals, controls the ignition angle of the ignition system and/or the injection pulse width of the fuel injection system. An electronic system associated with the automatic transmission for its part controls on the basis of rotational speed and load requirement signals, shifting operations of the automatic transmission. To improve the control of the whole driving unit with the object of obtaining smooth shifting operations, calculation systems of the transmission control electronics and of the electronics of the engine are always interconnected for communicating via interfaces wherein to the electronics of the engine are fed from the transmission electronics in a cyclic time beat a percent torque requirement based on which the control device automatically modulates the torque of the engine.
For this purpose is used a decentralized microprocessor system in which the separate microprocessors of the control electronics of the engine and of the transmission electronics exchange data via serial or parallel interfaces. Via the interfaces are continuously relayed the actual data of the transmission electronics and corresponding requirements on the control electronics for the engine which thereby can for its part adapt to the transmission electronics. Thereby the transmission electronics can at every moment transmit to the control electronics of this engine in the cyclic time beat a desired torque reduction or torque increase with reference to percent values.
Another method to increase the driving comfort of motor vehicles, especially during load change operation, by modulating the dynamics of the driver's desired torque with an appertaining closed control loop, has been described in the Applicant's older patent application No. 198,45,167.9. To a first microprocessor are here fed signals relative to the accelerator pedal position and to the rotational speed of the engine according to the actual driving mode, the output signal originating from the microprocessor together with a manually adjustable torque requirement signal being fed to a second microprocessor the output signal of which passes through a filter; the filtering time produces a damping of load change and jolt between driver's wish and inner motive reaction after which the output signal of the filter together with other control signals are fed to a third microprocessor the output signal of which together with a torque-limiting signal originating from the transmission electronics are fed to a fourth microprocessor which, after processing the signals, generates control signals for the throttle valve angle, the ignition angle and the injection pulse width. The dynamics of the driver's desired torque is modulated by the electronic transmission control by the fact that the signals originating ther

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Engine torque control system based on the dynamic behavior... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Engine torque control system based on the dynamic behavior..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Engine torque control system based on the dynamic behavior... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2988888

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.