Optical-fiber cable containing thermally bonded fiber optic...

Optical waveguides – Optical transmission cable – Loose tube type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06483971

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention pertains to an improved fiber-optics cable (referred to as optical-fiber cables herein) and to a corresponding fabrication process. In particular, the present invention pertains to a process of bundling optical fiber buffer tubes, to form an improved flexible optical core, and to an improved flexible optical core assembled in a SZ stranding configuration.
2. Discussion of Related Art
There are three general types of optical-fiber cable structures. Typically, for each of the three general structures, the jacket is made of a polymeric material and is extruded around what is commonly referred to as the optical core.
In the first structure, commonly known as a “loose-tube” construction, the optical core includes a central strength member around which buffer tubes are assembled in either a helical or SZ stranding configuration. The buffer tubes contain optical fibers or optical fiber ribbons, and the tube assembly is surrounded by a jacket. In this first structure, the tubes containing the optical fibers have relatively thick and rigid walls, which are made of a polymeric material. With this first structure, the optical fibers can be displaced relative to the tubes, in which they are housed. Cables possessing this first type of structure are described, for example, in U.S. Pat. No. 4,366,667 and European Patent EP-A-0,846,970.
In the second structure, the optical core includes a single tube, typically referred to as central tube construction, which is made of a polymeric material and which houses the optical fibers. If necessary, the central tubes include ribbons that may be assembled together in a spiral configuration. The central tube is surrounded by a jacket that is defined by a wall. Strength members can be embedded in the jacket wall.
In the third type of structure, the optical core includes buffer tubes made of polymeric material. The buffer tubes house the optical fibers and are assembled together in a helical or SZ stranding pattern. The buffer tube assembly is surrounded by a jacket, within which strength members are embedded. In this third structure, the buffer tubes are relatively thin and flexible and hold the optical fibers snugly, such that displacement of the optical fibers relative to each other and to the buffer tubes is highly constrained.
For certain installations, optical-fiber cables may be arranged such that, along certain paths, sections of the cable are vertical. In such vertical sections of optical-fiber cable, an optical core assembled in a SZ stranding configuration can unravel due to the effects of gravity, with each buffer tube tending to unwind and spread out vertically in a rectilinear manner. The risk of de-stranding associated with this undesirable phenomenon is particularly significant near the reversal points, where the winding direction of a buffer tube in a SZ stranding configuration reverses. More generally, unraveling and de-stranding can occur whenever the optical core or the optical cable is subjected to a tensile strain, e.g., during manufacturing or installation.
Optical-fiber cables with the first structure typically include a binder, which holds the buffer tubes in position, thereby avoiding the problem of de-stranding. Binders can be used with such optical-fiber cables because of the relative rigidity of the buffer tubes used in the first type of structure. This rigidity prevents any tightening stress exerted by the binder on the buffer tubes from being transmitted to the optical fibers.
However, binders cannot be used satisfactorily on optical-fiber cables with the third, flexible optical core structure because these cables use thin walled buffer tubes that offer little resistance to the crushing stresses that binders can produce. Consequently, the transverse stress exerted by a binder on the buffer tubes is easily transmitted to the optical fibers, thereby subjecting the optical fibers to stresses that can interfere with their optical performance. Thus, another technique is needed to prevent vertical sections of a flexible optical core or elongated core, assembled in a SZ stranding configuration, from de-stranding.
In addition, the use of binders is undesirable, in that they add cost and require special stranding equipment. Furthermore, accessing the cable requires cutting through the binders, leading to an additional access step. Accordingly, an alternative to the use of binders is desirable for these additional reasons.
An additional problem with known flexible optical cores, which are assembled in a SZ stranding configuration, is that it is difficult to strand the constituent buffer tubes uniformly, to form an optical core of uniform strand geometry. This difficulty stems from the flexibility of the buffer tubes used in such a core and from the absence of a central strength member to support the buffer tubes and couple them by friction. Accordingly, an improved bundling method is needed to improve the core cohesion and to maintain a certain amount of stranding (i.e., the number of turns in the S or Z direction) through subsequent manufacturing steps.
Preferably, the improved tube bundling technique would provide a buffer tube assembly that will maintain its geometry under load. In particular, ensuring a sufficient amount of stranding is essential for core cohesion and bending properties, and in order to provide predictable mid-span access. However, because flexible optical cores possess no central strength member, mechanical relaxation of the buffer tubes, as well as tension applied on the optical core (e.g. during a jacketing process step, or during routing the optical core in a splice box), may cause the buffer tubes to unravel or de-strand. As indicated above, such unraveling or de-stranding poses potential problems. Accordingly, an improved stranding method is needed to maintain ordered stranding under load.
SUMMARY OF THE INVENTION
According to one object of the present invention, it is sought to prevent vertical and/or strained sections of flexible buffer tube, fiber optic cable cores from unraveling or destranding. Additionally, a second object is to avoid the use of binders, thereby reducing costs, providing a streamlined process, and simplifying access to the cables. According to a third object of the present invention, it is sought to provide an improved stranding for optical cores formed of flexible buffer tubes, in order to promote core cohesion, to maintain a certain amount of stranding through subsequent manufacturing steps, and to maintain a uniform stranding geometry under load.
The present invention achieves these and other objectives by providing an opticalfiber cable including an assembly of buffer tubes which includes at least two flexible buffer tubes that are thermally bonded to one another. The optical-fiber cable further includes a plurality of optical fibers, which are housed within the buffer tubes. A jacket surrounds the assembly of buffer tubes.
According to a second aspect of this embodiment, the jacket is made of polyethylene and the tubes are made of polyvinyl chloride (PVC) or a thermoplastic elastomer with flexible diol segments.
According to a third aspect, the buffer tubes are contained within the jacket in either a helical or a SZ stranding configuration.
According to a fourth aspect, the optical-fiber cable includes mechanical reinforcement strands, which are preferably made of aramid and, more preferably, are positioned between the tubes and the jacket and arranged helically.
According to a fifth aspect, at least one strength member is provided at the periphery of the assembly of buffer tubes. Preferably, the strength member is embedded in a wall of the jacket.
According to a sixth aspect, the optical-fiber cable further includes water-proofing elements such as water-proofing tape that is positioned between the tubes and the jacket when in an annular assembly, expandable elements that are positioned within the jacket when in an interwoven tube assembly, and/or a filler material, which is used within the tubes.
The pre

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical-fiber cable containing thermally bonded fiber optic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical-fiber cable containing thermally bonded fiber optic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical-fiber cable containing thermally bonded fiber optic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2984486

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.