Facsimile and static presentation processing – Static presentation processing – Attribute control
Reexamination Certificate
2000-12-15
2002-12-31
Grant, II, Jerome (Department: 2622)
Facsimile and static presentation processing
Static presentation processing
Attribute control
C358S003030, C358S003070, C358S003100
Reexamination Certificate
active
06501567
ABSTRACT:
FIELD OF THE INVENTION
The subject invention pertains to the art of color image/text printing or display systems, and is especially applicable to a method and apparatus wherein color halftoning (representing a continuous tone image with a binary representation) is implemented with a partitioned stochastic screen or correlated stochastic screens for maximal ink dispersion and optimized spatial frequency response in the printing or display process.
BACKGROUND OF THE INVENTION
In today's business and scientific world color has become essential as a component of communication. Color facilitates the sharing of knowledge and ideas. Companies involved in the development of digital color print engines are continuously looking for ways to improve the accuracy and total image quality of their products.
Color images are commonly represented as one or more separations, each separation comprising a set of color density signals for a single primary or secondary color. Color density signals are commonly represented as digital gray or contone pixels, varying in magnitude from a minimum to a maximum, with a number of gradients between corresponding to the bit density of the system. Thus, a common 8 bit system provides 256 shades of each primary color. A color can therefore be considered the combination of magnitudes of each pixel, which when viewed together, present the combination color. Usually, printer signals include three subtractive primary color signals (Cyan, Magenta and Yellow) and a Black signal which together can be considered the printer colorant signals. Each color signal forms a separation and when combined together with the other separations, forms the color image.
Document Processing System devices (“DPS”) refers to a set of devices that construct, produce, print, transmit, scan, store and archive documents and their constituent elements. Such devices include marking engines, printers, scanners, fax machines, electronic libraries, and the like many of which can be employed in a xerographic environment. The present invention addresses situations particularly relevant to printing systems and discusses them as a prime example of a Document Processing System, but should not be construed to be limited to any such particular printing application. Any DPS is intended to benefit from the advantages of this invention.
Printers provide a limited number of output possibilities, and are commonly binary, i.e., they produce either a dot or no dot at a given pixel location. Thus, given a color separation with 256 shades of each additive primary color, a set of binary printer signals must be produced representing the contone effect. This process is referred to as halftoning. In such arrangements, over a given area and the separation having a number of contone pixels therein, each pixel value of an array of contone pixels within the area is compared to one of a set of preselected thresholds (the thresholds may be stored as a dither matrix and the repetitive pattern generated by this matrix is considered a halftone cell) as taught for example in U.S. Pat. No. 4,149,194 to Holladay. The effect of such an arrangement is that, for an area where the image is a contone, some of the thresholds in the matrix will be exceeded, i.e., the image value at that specific location is larger than the value stored in the dither matrix for that same location, while others are not. In the binary case, the pixels or cell elements for which the thresholds are exceeded might be printed as black or some color, while the remaining elements are allowed to remain white or uncolored, dependent on the actual physical quantity described by the data. Since the human visual system tends to average out rapidly varying spatial patterns and perceives only a spatial average of the micro-variation in spot-color produced by a printer, the halftone process described above can be used to produce a close approximation to the desired color in the contone input.
The dither matrix of threshold values is often referred to as a “screen”, and the process of generating the binary image from the contone image using the screen is called “screening”. Conventional digital halftones start as a number of isolated dots which grow bigger as more colorant is requested on the paper. These screens are referred to as clustered-dot screens. The fundamental rate at which the dots in a clustered dot screen are repeated is commonly referred to as the screen's spatial frequency [Note R. Ulichney, “Digital Halftoning”, MIT Press, Cambridge, Mass., 1987]. The higher the screen spatial frequency, the finer and smoother appearing the image and also the greater is the capacity for the dots to represent fine detail in the image. Dithering creates problems in color document reproduction where the repeating pattern of a screen through the image, when superposed over similar repeating patterns in multiple separations, can cause moiré or other artifacts, particularly in a printing system with less than ideal registration between separations.
Stochastic, or non-periodic screening is an alternative to conventional clustered dot screens. Instead of producing dots that grow with increased colorant on paper, the stochastic screening method produces a well-dispersed pattern of isolated dots at spaced pixel locations. Thus there is no fundamental periodicity in the dots, instead the design of the screen attempts to produce patterns with pleasant noise characteristics. The pleasant noise characteristics are achieved by designing the screen so as to distribute the noise energy in the region of high spatial frequency, where the human visual system has a significantly reduced sensitivity. In this respect, U.S. Pat. No. 5,673,121 to Wang, discloses a stochastic halftone screening method for designing an idealized stochastic screen and is herein incorporated by reference as it discloses a particular stochastic screen useful in implementation of the subject invention, as will be more fully explained below. One of the advantages of stochastic, or non-periodic screening over periodic screening, is the suppression of moire.
Color stochastic screening has typically been implemented in the prior art by using the same screen for all separations (dot-on-dot) or by using independent screens (possibly obtained by shifting/rotating/flipping a single screen). These methods do not produce halftones with maximal ink dispersion and optimized spatial frequency response because there is no control of the overlap between the printed dots for different separations. The less successful the screening processes, the less smooth, i.e. more grainy, the resultant image appears. It is of course an overall objective of the subject invention to produce a resultant image in which the graininess is minimized, smoothness is enhanced and the intended colors are accurately reproduced.
One way to design and promote the desirable aspects of a single screen is through application and assessment of a “merit function” to the screen. Consider a halftone screen with N different threshold values, from 1 to N. The binary output B(x, y) is determined by the following dithering rule:
B
(
x,y
)=1 if
G
(
x,y
)≧
T
(
x,y
);
B
(
x,y
)=0 elsewhere (1)
where x, y are the spatial coordinates, T is the threshold value at (x, y) and G is the gray-level input ranging from 0 to N. The value one of the output B represents a white pixel and zero, a black pixel. Without dot overlapping, a binary halftone pattern corresponding to a constant input level G will have G black pixels and N−G white pixels within the area defined by the halftone screen. The visual appearance of this halftone pattern depends on whether the black pixels or the white pixels are minorities. If the white pixels are, i.e., G<N/2, the appearance of the output should be based on the distribution of white pixels. Otherwise, the appearance should be on the distribution of black pixels. A merit function can be used to combine evaluations of all levels, thus, a half of the merit is on distributions of black pixels an
Sharma Gaurav
Wang Shen-Ge
Fay Sharpe Fagan Minnich & McKee LLP
Grant II Jerome
LandOfFree
Method and system for designing spatially-partitioned and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system for designing spatially-partitioned and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for designing spatially-partitioned and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2981790