Radial piston pump for producing high pressure fuel

Expansible chamber devices – Relatively movable working members – Interconnected with common rotatable shaft

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C092S129000, C091S491000

Reexamination Certificate

active

06347574

ABSTRACT:

PRIOR ART
The invention relates to a radial piston pump for generating high fuel pressure in fuel injection systems of internal combustion engines, in particular in a common rail injection system. The piston pump includes a drive shaft which is supported in a pump housing and is embodied eccentrically or has camlike protrusions in the circumferential direction, a plurality of pistons are disposed radially with respect to the drive shaft in a respective cylinder chamber with a plate mounted on the ends, toward the drive shaft, of each of the pistons. The pistons move back and forth radially in the respective cylinder chamber by rotation of the drive shaft.
In such a radial piston pump, braced on the inside, relatively large forces are brought to bear by the rotating drive shaft on the pistons, as a function of the quantities of fuel aspirated into the cylinder chambers, in order to exert pressure on the fuel. In the aspiration, the plate is as a rule moved toward the drive shaft by a prestressed spring.
Within the scope of the present invention, it has been found that the conventionally used plates and/or the pistons are damaged in certain operating conditions, especially when an element is partly filled. These wear phenomena can lead to breakage of the plate and/or pistons and are therefore undesirable.
It is therefore an object of the invention to furnish a radial piston pump which overcomes the above disadvantages. In particular, breakage of the plate and/or of the piston should be prevented. The plate should function without wear in operation, even at high pressures. Perfect operation of the radial piston pump should be assured even if the cylinder chambers are only partly filled. The radial piston pump of the invention should withstand a pump pressure of up to 2000 bar in the pumping direction and nevertheless be economical to manufacture.
This object is attained by the radial piston pump set forth hereinafter. Particular versions of the invention are disclosed herein.
A radial piston pump for generating high fuel pressure in fuel injection systems of internal combustion engines, in particular in a common rail injection system has a drive shaft which is supported in a pump housing and is embodied eccentrically or has camlike protrusions in the circumferential direction a plurality of pistons are disposed radially with respect to the drive shaft in a respective cylinder chamber a plate is mounted on the ends toward the drive shaft of each of the pistons, and the pistons are movable back and forth radially in the respective cylinder chamber by rotation of the drive shaft. This object is attained in that the plate is pivotably connected to the associated piston. The damage to the plate and/or piston found within the scope of the present invention can be ascribed to a bending stress on the piston. By pivotably connecting the plate to the piston, the load on the piston from moments and bracing forces is reduced. Because of the movable mounting of the plate on the piston, a moment from the plate is prevented from being transmitted to the piston. Thus, even at peak pressures up to 2000 bar, perfect function of the radial piston pump of the invention is assured, even if the individual elements are only partly filled.
A particular version of the invention is characterized in that the plate is retained on the piston by a plate holder. In this kind of radial piston pump braced on the inside, the plate mounted on the ends of each of the pistons has contact with the drive shaft, or with a ring, supported on the drive shaft, that has three flat faces offset from one another by 120°. In operation of the radial piston pump, the pistons are set into a reciprocating motion by the eccentricity of the drive shaft, or by the camlike protrusions on the drive shaft. Relatively major forces are exerted by the rotating drive shaft on the pistons, as a function of the quantities of fuel aspirated into the cylinder chambers, so that pressure is exerted on the fuel. It has been found that in certain operating states (partial filling), the conventionally used plates, plate holders and/or pistons are extremely severely stressed and sometimes also damaged. This can cause a complete failure of the pump. The damage to the plate, plate holder and/or piston ascertained within the scope of the present invention is ascribed to high bending stress on the plate holder and piston from the rotation of the drive shaft, or of the ring that can be disposed between the drive shaft and the plate, if the plate is connected more or less rigidly to the piston via coupling elements. Pivotably connecting the plate to the piston reduces the loading of the plate and the piston from moments and bracing forces. This prevents breakage to the plate, the plate holder, and/or the piston.
A further particular object of the invention is characterized in that the end toward the drive shaft of the piston has the shape of a spherical portion and is received in a corresponding indentation in the middle of the plate. As a consequence of the spherical embodiment of the piston base and the plate, given suitable design, a more-uniform pressure per unit of surface area between the plate and the ring seated on the eccentric shaft is achieved. As a result, the wear that occurs in operation of the radial piston pump is advantageously reduced.
A further particular object of the invention is characterized in that the plate has the shape of a round disk, whose circumferential edge is rounded and tapers toward the drive shaft, and the shape of the plate holder is adapted to the rounded edge of the plate. As a result, in the installed state, tilting of the plate relative to the plate holder is made possible. This offers the advantage that upon rotation (tilting) of the plate, no moment is transmitted to the plate holder or the piston. This reduces the load on the plate holder in operation.
A further particular object of the invention is characterized in that the plate, on the side toward the piston, has a chamfer on the circumference. This facilitates the mounting of the plate. Upon the insertion of the plate into the plate holder, the chamfer of the edge of the plate assures that the plate holder will be spread apart and will easily pass over the plate.
A further particular object of the invention is characterized in that the piston has a collar, which merges with the spherically shaped end portion of the piston. The collar shapes a stop for the plate holder on the piston. As a result, snap rings, which are used in conventional radial piston pumps to fasten the plate holder to the piston and which, as a result of breakage or loosening from the groove, lead to the failure of the pump—especially in the event of partial filling—can be dispensed with.
A further particular object of the invention is characterized in that the piston includes a tappet, whose end toward the drive shaft is embodied as a spherical portion, which is received in a corresponding indentation in the middle of the plate. The spherical embodiment of the piston base and the plate has the consequence not only of mobility of the plate but also that the pressure per unit of surface area decreases. This advantageously reduces the wear that occurs in operation of the radial piston pump.
A further particular object of the invention is characterized in that a groove is provided on the piston between the tappet and the spherical portion, and this groove is engaged by a crimped edge, which is embodied on the plate. The plate is retained on the piston by the crimped edge that engages the groove. Adequate play for the mobility of the connection must be provided for. The geometric dimensioning of the connection is designed such that a relatively low-play degree of freedom of the plate in the vertical direction of at least ±10° can be achieved. Attaching the plate to the piston, as provided by the invention, has the advantage that a plate holder used in conventional radial piston pumps for fastening the plate can be dispensed with. In other words, fewer individual parts are needed, makin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Radial piston pump for producing high pressure fuel does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Radial piston pump for producing high pressure fuel, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radial piston pump for producing high pressure fuel will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2980534

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.