Surface acoustic wave filter having an improved edge...

Wave transmission lines and networks – Coupling networks – Electromechanical filter

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C333S193000

Reexamination Certificate

active

06351197

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a surface acoustic wave (SAW) filter of the resonator type, which is suitable as a bandpass filter with low losses and a high cut-off band attenuation ratio, in particular as an input or output filter for cordless or mobile telephones.
Such an SAW filter is known, for example, from German Patent DE 44 08 989 C2. That filter has a large number of surface acoustic wave resonators, which are connected in series and parallel with one another. Each of the resonators includes an interdigital transducer, which is disposed between two reflectors. Both electrode fingers of the interdigital transducers and reflectors (which are disposed, for example, like a grid) have a finger periodicity which corresponds essentially to half a wavelength of a resonant frequency.
Consequently, not only the surface acoustic waves produced at the individual electrode fingers, but also the surface acoustic waves reflected at the individual reflectors can be optimally amplified by constructive interference. An RF signal can thus be transmitted virtually without any losses from one connection of the surface acoustic wave resonator to the other. The series and parallel connection of a plurality of resonators also results in frequencies outside the pass band being further attenuated, and a cut-off band suppression thus being increased. Outside the pass band, SAW filters of the resonator type provide optimum cut-off band suppression, if the finger periodicity of the reflectors and of the interdigital transducers is in each case the same for all of the interconnected series resonators and for all of the interconnected parallel resonators. The above-mentioned German patent also proposes that the finger periodicity, or the distance between the electrodes in the reflectors, be set in such a way that it is not the same as the distance between the electrodes in the interdigital transducers. That proposal relates, in particular, to the distance between the electrodes in the reflectors of those resonators which are connected in series with one another. That results in the elimination of the interference spike, which occurs outside the pass band in known filters.
However, in those and other known SAW filters of the resonator type, it is regarded as a disadvantage that the edges of the pass band on the pass band curve do not fall sufficiently steeply, and that the transition between the pass band and the cut-off band is not sharp enough, so that the pass band curve falls too slowly in that region, or has excessively rounded edges.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a surface acoustic wave (SAW) filter of the resonator type having an improved edge steepness, which overcomes the hereinafore-mentioned disadvantages of the heretofore-known devices of this general type, which has good cut-off band suppression and which nevertheless has a sufficiently broad pass band with steeply falling edges.
With the foregoing and other objects in view there is provided, in accordance with the invention, a surface acoustic wave (SAW) filter with two ports, comprising a substrate having mutually parallel tracks for surface acoustic waves; at least three resonators in the tracks, each of the resonators having reflectors, an interdigital transducer disposed between two of the reflectors, a pair of electrical connections, and a plurality of electrode fingers disposed at a finger periodicity; the resonators including resonators connected in series through the connections and resonators connected in parallel with the resonators connected in series; and the resonators including a plurality of resonators of at least one resonator type, at least two of the plurality of resonators differing with respect to the finger periodicities of the interdigital transducers.
The SAW filter according to the invention has at least two resonators, which are connected in parallel and/or in series with one another, and in which either the series-connected resonators and/or the parallel-connected resonators have at least two different finger periodicities of the interdigital transducers. The magnitude of this discrepancy in the finger periodicities allows a greater pass band edge steepness to be achieved deliberately and, in particular, a sharper transition to be achieved from the pass band to the cut-off band. Furthermore, a flatter pass band is provided, with the forward loss being low and unchanged. This result is surprising and contradicts the values which one has been led to expect for such a configuration. A shallower edge steepness is actually expected for resonators with a different finger periodicity than for filters with resonators connected in parallel and series and which have the same finger periodicity. However, the invention provides an SAW filter with an edge steepness that at least remains the same.
It is furthermore possible to deliberately make one of the two edges of the pass band steeper with an SAW filter according to the invention. This may be that edge which bounds the pass band toward higher frequencies, or else that edge which bounds the pass band toward lower frequencies. On one hand, this is achieved if different finger periodicities are set only for series-connected resonators, with the left-hand edge, which points toward lower frequencies, being set to be steeper. On the other hand, by differently setting the finger periodicities in the parallel-connected resonators, the right-hand edge of the pass band, which is the edge that points toward higher frequencies, is made steeper. Furthermore, the transition from the pass band to the edge (for example in the relative attenuation range from 0 to 3 dB) is more abrupt.
In accordance with another feature of the invention, at least three different finger periodicities are selected for series-connected resonators R
s1
to R
sn
(where n≧3), in which case the resonator having the greatest finger periodicity is disposed on the outside in the series circuit, while the resonator having the smallest finger periodicity is disposed in the center. If there are more than three series-disposed resonators, the resonator having the smallest finger periodicity is preferably not disposed adjacent the resonator having the greatest finger periodicity.
In accordance with a further feature of the invention, there are provided four series-connected resonators, in which case each series resonator forms a basic member with a resonator connected in parallel with it, the parallel-connected resonators in the basic member can be assigned either to only one or to two adjacent basic members, three different values are set for the finger periodicity of the electrode fingers of the series resonators, an outer resonator in turn has the greatest finger period, the resonator having the smallest finger period is located on the inside, and the other outer resonator and one inner resonator have the same finger periods. Finger periods P
1
to P
4
for four series-disposed resonators R
1
to R
4
are thus: P
2
<P
1
=P
3
<P
4
or P
3
<P
1
=P
2
<P
4
, or in the opposite order in each case.
In general, it can be said that better cut-off band suppression is achieved with a greater number of series-connected resonators. In the case of SAW filters according to the invention, and with a given number of parallel-connected resonators, the maximum number of series-connected resonators are selected, in order to obtain a maximum variation capability for the configuration of the finger periodicities, with the minimum total number of resonators. For example, an SAW filter according to the invention having three basic members can be formed by two parallel resonators and three series resonators, and an SAW filter according to the invention having four basic members can be formed with four series resonators and two parallel resonators.
Analogously, a filter according to the invention may include three basic members with a maximum number of parallel resonators and a minimum number of series resonators.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Surface acoustic wave filter having an improved edge... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Surface acoustic wave filter having an improved edge..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surface acoustic wave filter having an improved edge... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2971715

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.