Methods for analysis and sorting of polynucleotides

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S286600

Reexamination Certificate

active

06344325

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates in general to a method of analyzing and sorting polynucleotides (e.g., DNA) by size. In particular, the invention relates to a method of analyzing and/or sorting individual polynucleotide molecules in a microfabricated device by measuring the signal of an optically-detectable (e.g., fluorescent) reporter associated with the molecules.
References
Aine, H. E., et al., U.S. Pat. No. 4,585,209 (1986).
Baker, D. R., in
CAPILLARY ELECTROPHORESIS
, John Wiley & Sons, New York, 1995.
Ballantyne, J. P., et al.,
J. Vac. Sci. Technol
. 10:1094 (1973).
Castro, A., et al.,
Anal. Chem
. 85:849-852 (1993).
Goodwin, P. M., et al.,
Nucleic Acids Research
21-(4) :803-806 (1993).
Gravesen, P., et al., U.S. Pat. No.
5
,
452
,
878
(1995).
Haugland, R. P., in
HANDBOOK OF FLUORESCENT PROBES AND RESEARCH CHEMICALS
, 5
th
Ed., Molecular Probes, Inc., Eugene, Oreg. (1992).
Keller, R. A., et al., GB Patent No. 2,264,496 (10/95).
Krutenat, R. C., in
KIRK-OTHMER ENCYCLOPEDIA OF CHEMICAL TECHNOLOGY
, 3
rd
Ed., John Wiley & Sons, New York, Vol. 15, 241-274.
O'Connor, J. M., U.S. Pat. No. 4,581,624 (1986).
van Lintel, H. T. G., U.S. Pat. No. 5,271,724 (1993).
Wise, K. D., et al., U.S. Pat. No. 5,417,235 (1995).
BACKGROUND OF THE INVENTION
Identification and separation of nucleic acid fragments by size, such as in sequencing of DNA or RNA, is a widely used technique in many fields, including molecular biology, biotechnology, and medical diagnostics. The most frequently used method for such separation is gel electrophoresis, in which different sized charged molecules are separated by their different rates of movement through a stationary gel under the influence of an electric current. Gel electrophoresis presents several disadvantages, however. The process can be time consuming, and resolution is typically about 10%. Efficiency and resolution decrease as the size of fragments increases; molecules larger than 40,000 are difficult to process, and those larger than 10 million base pairs cannot be distinguished.
Methods have been proposed for determination of the size of nucleic acid molecules based on the level of fluorescence emitted from molecules treated with a fluorescent dye (Keller, et al., 1995; Goodwin, et al., 1993; Castro, et al., 1993). Castro describes the detection of individual molecules in samples containing either uniformly sized (48 Kbp) DNA molecules or a predetermined 1:1 ratio of molecules of two different sizes (48 Kbp and 24 Kbp). A resolution of approximately 12-15% was achieved between these two sizes. There is no discussion of sorting or isolating the differently sized molecules.
In order to provide a small diameter sample stream, Castro uses a “sheath flow” technique wherein a sheath fluid hydrodynamically focuses the sample stream from 100 &mgr;m to 20 &mgr;m. This method requires that the radiation exciting the dye molecules, and the emitted fluorescence, must traverse the sheath fluid, leading to poor light collection efficiency and resolution problems caused by lack of uniformity. Specifically, this method results in a relatively poor signal-to-noise ratio of the collected fluorescence, leading to inaccuracies in the sizing of the DNA molecules.
Goodwin mentions the sorting of fluorescently stained DNA molecules by flow cytometry. This method, however, employs costly and cumbersome equipment, and requires atomization of the nucleic acid solution into droplets, with the requirement that each droplet contains at most one analyte molecule. Furthermore, the flow velocities required for successful sorting of DNA fragments were determined to be considerably slower than used in conventional flow cytometry, so the method would require adaptations to conventional equipment. Sorting a usable amount (e.g., 100 ng) of DNA using such equipment would take weeks, if not months, for a single run, and would generate inordinately large volumes of DNA solution requiring additional concentration and/or precipitation steps.
It is thus desirable to provide a method of rapidly analyzing and sorting differently sized nucleic acid molecules with high resolution, using simple and inexpensive equipment. A short optical path length is desirable to reduce distortion and improve signal-to-noise of detected radiation. Ideally, sorting of fragments can be carried out using any size-based criteria.
SUMMARY OF THE INVENTION
In one aspect, the present invention includes a microfabricated device for sorting reporter-labelled polynucleotides or polynucleotide molecules by size. The device includes a chip having a substrate into which is microfabricated at least one analysis unit. Each analysis unit includes a main channel, having at one end a sample inlet, having along its length a detection region, and having, adjacent and downstream of the detection region, a branch point discrimination region. The analysis unit further includes a plurality of branch channels originating at the discrimination region and in communication with the main channel, a means for passing a continuous stream of solution containing the molecules through said detection region, such that on average only one molecule occupies the detection region at any given time, a means for measuring the level of reporter from each molecule within the detection region, and a means for directing the molecule to a selected branch channel based on the level of reporter.
In one general embodiment, the directing or sorting means includes a pair of electrodes effective to apply an electric field across the discrimination region, where the applied field is effective to direct a particular molecule into a selected branch channel based on the amount of reporter signal detected from that molecule.
In another general embodiment, a flow of molecules is maintained through the device via a pump or pressure differential, and the directing means comprises a valve structure at the branch point effective to permit the molecule to enter only one of the branch channels.
In still another general embodiment, a flow of molecules is maintained through the device via a pump or pressure differential, and the directing means comprises, for each branch channel, a valve structure downstream of the branch point effective to allow or curtail flow through the channel.
In a related general embodiment, a flow of molecules is maintained through the device via a pump or pressure differential, and the directing means comprises, for each branch channel, a pressure adjusting means at the outlet of each branch channel effective to allow or curtail flow through the channel.
A device which contains a plurality of analysis units may further include a plurality of manifolds, the number of such manifolds typically being equal to the number of branch channels in one analysis unit, to facilitate collection of molecules from corresponding branch channels of the different analysis units.
In preferred embodiments, the device includes a transparent (e.g., glass) cover slip bonded to the substrate and covering the channels to form the roof of the channels. The channels in the device are preferably between about 1 &mgr;m and about 10 &mgr;m in width and between about 1 &mgr;m and about 10 &mgr;m in depth, and the detection region has a volume of between about 1 fl and about 1 pl.
The exciting means may be, for example, an external laser, a diode or integrated semiconductor laser or a high-intensity lamp (e.g., mercury lamp).
The measuring means may be, for example, a fluorescence microscope in connection with an intensified (e.g., SIT) camera, an integrated photodiode, or the like.
In another aspect, the invention includes a method of isolating polynucleotides having a selected size. The method includes A) flowing a continuous stream of solution containing reporter-labeled polynucleotides through a channel comprising a detection region having a selected volume, where the concentration of the molecules in the solution is such that the molecules pass through the detection region one by one, B) determining the size of each molecule as it passes thro

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for analysis and sorting of polynucleotides does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for analysis and sorting of polynucleotides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for analysis and sorting of polynucleotides will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2971050

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.