Method and architecture for an interactive two-way data...

Telecommunications – Radiotelephone system – Zoned or cellular telephone system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S422100, C455S550100, C455S552100, C455S424000, C455S412100

Reexamination Certificate

active

06405037

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to data communications, and in particular to two-way data communication devices including a cellular telephone, a two-way pager, and a telephone that permit a user to interface with and interact with a server on a computer network.
2. Description of Related Art
For at least the last five years, the wireless communication industry has tried to merge computing with wireless communications. This industry wide effort has held the promise of bringing software intelligence to telecommunication devices including mobile wireless communications devices such as cellular telephones and two-way pagers as well as standard telephones.
After years of research and development, and hundreds of millions of dollars' investment by some of the largest companies in the field such as Motorola, AT&T, Sony, Matsushita, Phillips and IBM, the results have been nothing but disappointing. Typically, the intelligent communication devices resulting from these efforts include both the hardware necessary for a computer module and the hardware for a wireless communications module. Examples of such products are Simon from IBM and Bell South, MagicLink from Sony, and Envoy from Motorola.
Fundamental design and cost problems arising directly from the approach taken by the designers of these intelligent communication devices have limited widespread market acceptance of these devices. The combination of a wireless communication module with a computing module leads to a device that is too bulky, too expensive, and too inflexible to address the market requirements.
The combination of the two modules is too large and too heavy to fit in a user's pocket. Pocket size is a key requirement of the mobile communication market which remains unmet by these devices
In addition, the cost of these devices is close to the sum of the cost of the computer module and of the communications module, which is around a one thousand dollar end-user price. Market research indicates that the market for intelligent wireless communications devices is at prices around $300. Even with a 20% compound cost decline, it would take five years for the combination units to meet today's customers' price requirements. It is therefore unlikely that devices designed by combining a computer and a wireless module, no matter how miniaturized and cost reduced, can satisfy the cost requirement of the market during this decade.
To succeed in the market place, intelligent wireless communication devices must be able to support a wide variety of applications specific to each market segment. Typically, these applications must be added to the device by the end-user after purchase. Thus, the device must provide a method for loading the initial application and for subsequent updating of the application.
The price sensitivity for intelligent communication devices and the size limitations means that an intelligent communication device cannot support the amount of core memory (RAM), a hard disk or non-erasable memory, or a traditional floppy disk drive, commonly found on computers. These limitations close the traditional routes for delivering new applications or updates to intelligent communications devices.
As a result, the current crop of intelligent communication devices run only the few applications which were burned into their ROMs at the factory or which are contained in a ROM card plugged into a slot designed for this purpose. This scheme lacks the flexibility needed to run the thousands of applications required to address the fragmented requirements of the market and provides no simple method for updating the applications after the device has been sold.
Two other communication oriented attempts at bringing intelligence to telephones are Short Messaging Service (SMS) and Analog Display Service Interface (ADSI). SMS specifies how messages are delivered to and from a cellular telephone and how the cellular telephone should store the messages. SMS also defines some simple processing which the cellular telephone can perform on the message, such as calling a telephone number embedded in the message.
SMS's architecture is similar to that of paging networks with the difference that devices implementing the SMS architecture operate over the control channel of the cellular telephone network. SMS is deployed primarily in Europe over the GSM network.
SMS messages are not delivered in real time. The time delays can range from 30 seconds up to 10 minutes, which makes SMS unsuitable for real time applications. The main purpose of SMS is the delivery of messages. SMS does not specify an application protocol or cellular telephone application module which further restricts its usefulness in running applications on cellular telephones. After a few years of deployment in Europe, SMS implementations have been limited to notification services such as two-way paging and voice mail notification.
SMS as a medium is unsuited to building applications which allows the retrieval, manipulation, to and storage of information. This is the reason why the industry giants have not turned to SMS in their quest to add intelligence to cellular telephones, but have consistently attempted to combine a computer module with a wireless communications module.
ADSI was designed as an extension to Interactive Voice Response Systems. ADSI allows a smart telephone with a small screen to display prompts to assist users in choosing among various options. By using visual prompts instead of cumbersome voice prompts, ADSI is thought to make the use of interactive voice services easier and faster.
ADSI allows data to be sent from the service provider to the telephone in the form of screens. ADSI also allows the telephone to respond through touch tone signaling with a special coding to describe the full alphanumeric character set. With ADSI, a telephone is primarily a passive device services send text screens to the telephone, and the telephone sends back short strings indicating the choices the user made from the text screen.
ADSI makes no provisions for performance of processing in the telephone. As a result, ADSI generates a high traffic load on the telephone network since each user input is sent back to the service for processing. This makes ADSI unsuitable for wireless networks where bandwidth is at a premium and “air efficiency” is one of the most sought after qualities. The lack of processing capability in the telephone and the high bandwidth requirements of ADSI have prevented it from being considered by the industry for implementing intelligent wireless devices.
Up to now, intelligent communication devices have combined a computing module with a wireless communications module. However, to gain widespread acceptance, a two-way data communication device with processing capability and the ability to run a wide variety of differing user applications is needed. In addition, such a device should be comparable in size, cost, and weight to a cellular telephone.
SUMMARY OF THE INVENTION
According to the principles of this invention, the prior art limitations of combining a computer module with a wireless communication module have been overcome. In particular, a two-way data communication device of this invention, such as a cellular telephone, two-way pager, or telephone includes a client module that communicates with a server computer over a two-way data communication network. The principles of this invention can be used with a wide variety of two-way data communication networks. For example, two-way data communication networks for cellular telephones that may be used include a cellular digital packet data network as well as TDMA, CDMA, and GSM circuit switched data networks; and the AMPS analog cellular network with a modem. Similarly, for two-way pagers, two-way data communication networks include PACT, the new AT&T endorsed two way paging standard, or other priority two-way paging networks with data transport capability. The two-way data communication network for a telephone is the public switched telep

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and architecture for an interactive two-way data... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and architecture for an interactive two-way data..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and architecture for an interactive two-way data... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2969109

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.