Power plants – Internal combustion engine with treatment or handling of... – By means producing a chemical reaction of a component of the...
Reexamination Certificate
2000-03-17
2002-11-12
Vrablik, John J. (Department: 3748)
Power plants
Internal combustion engine with treatment or handling of...
By means producing a chemical reaction of a component of the...
C060S276000, C060S277000
Reexamination Certificate
active
06477832
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to a system and method for controlling an internal combustion engine coupled to an emission control device.
BACKGROUND OF THE INVENTION
In direct injection spark ignition engines, the engine operates at or near wide-open throttle during stratified air-fuel ratio operation in which the combustion chambers contain stratified layers of different air-fuel ratio mixtures. Strata closest to the spark plug contain a stoichiometric mixture or a mixture slightly rich of stoichiometry, and subsequent strata contain progressively leaner mixtures. The engine may also operate in a homogeneous mode of operation with a homogeneous mixture of air and fuel generated in the combustion chamber by early injection of fuel into the combustion chamber during its intake stroke. Homogeneous operation may be either lean of stoichiometry, at stoichiometry, or rich of stoichiometry.
Direct injection engines are also coupled to emission control devices known as three-way catalytic converters optimized to reduce CO, HC, and NOx. When operating at air-fuel ratio mixtures lean of stoichiometry, a three way catalyst optimized for NOx storage, known as a NOx trap or catalyst, is typically coupled downstream of the first three-way catalytic converter.
During lean, rich, and stoichiometric operation, sulfur contained in the fuel can become trapped in the emission control device in the form of SOx. This gradually degrades emission control device capacity for storing NOx, as well as emission control device efficiency. To counteract sulfur effects, various sulfur decontamination methods are available.
One method determines to perform a decontamination cycle when lean engine operation occurs simultaneously with high exhaust gas or NOx trap temperature. Such a method is discloses in U.S. Pat. No. 5,402,641.
The inventors herein have recognized a disadvantage with the above approach. In particular, these conditions do not provide the best atmosphere for controlling sulfur contamination. In particular, these conditions may occur during large transient conditions where the engine operation is changing widely and quickly. Performing decontamination using known methods under such conditions results in less accurate temperature control and less efficient decontamination. In particular, inaccurate temperature control may lead to degradation of the emission control device.
SUMMARY OF THE INVENTION
An object of the invention claimed herein is to provide a method for enabling emission control device decontamination cycles.
The above object is achieved, and disadvantages of prior approaches overcome, by a method for controlling an internal combustion engine of a vehicle, the engine coupled to an emission control device susceptible to reversible contamination, the method comprising: generating an indication of vehicle activity based on an operating condition; determining a performance impact of performing a decontamination cycle, where said decontamination cycle reverses the reversible contamination; and operating the engine based on said indication and said performance.
By using an indication of vehicle activity, it is possible to perform sulfur decontamination cycles under conditions where improved temperature control is possible. More accurate temperature control can lead to more efficient decontamination. In other words, transient disturbances, which degrade temperature control, cause temperature deviation from a desired temperature. Performing decontamination cycles when such disturbances are unlikely reduces these deviations and thereby improve control.
An advantage of the above aspect of the present invention is improved fuel economy due to improved temperature control.
Another advantage of the above aspect of the present invention is improved emission control device durability due to improved temperature control.
Other objects, features and advantages of the present invention will be readily appreciated by the reader of this specification.
REFERENCES:
patent: 3696618 (1972-10-01), Boyd et al.
patent: 3969932 (1976-07-01), Rieger et al.
patent: 4033122 (1977-07-01), Masaki et al.
patent: 4036014 (1977-07-01), Ariga
patent: 4178883 (1979-12-01), Herth
patent: 4251989 (1981-02-01), Norimatsu et al.
patent: 4622809 (1986-11-01), Abthoff et al.
patent: 4854123 (1989-08-01), Inoue et al.
patent: 4884066 (1989-11-01), Miyata et al.
patent: 4913122 (1990-04-01), Uchida et al.
patent: 4964272 (1990-10-01), Kayanuma
patent: 5009210 (1991-04-01), Nakagawa et al.
patent: 5088281 (1992-02-01), Izutani et al.
patent: 5097700 (1992-03-01), Nakane
patent: 5165230 (1992-11-01), Kayanuma et al.
patent: 5174111 (1992-12-01), Nomura et al.
patent: 5189876 (1993-03-01), Hirota et al.
patent: 5201802 (1993-04-01), Hirota et al.
patent: 5209061 (1993-05-01), Takeshima
patent: 5222471 (1993-06-01), Stueven
patent: 5233830 (1993-08-01), Takeshima et al.
patent: 5267439 (1993-12-01), Raff et al.
patent: 5270024 (1993-12-01), Kasahara et al.
patent: 5272871 (1993-12-01), Oshima et al.
patent: 5325664 (1994-07-01), Seki et al.
patent: 5331809 (1994-07-01), Takeshima et al.
patent: 5335538 (1994-08-01), Blischke et al.
patent: 5357750 (1994-10-01), Ito et al.
patent: 5377484 (1995-01-01), Shimizu
patent: 5402641 (1995-04-01), Katoh et al.
patent: 5410873 (1995-05-01), Tashiro
patent: 5412945 (1995-05-01), Katoh et al.
patent: 5412946 (1995-05-01), Oshima et al.
patent: 5414994 (1995-05-01), Cullen et al.
patent: 5419122 (1995-05-01), Tabe et al.
patent: 5423181 (1995-06-01), Katoh et al.
patent: 5433074 (1995-07-01), Seto et al.
patent: 5437153 (1995-08-01), Takeshima et al.
patent: 5448887 (1995-09-01), Takeshima
patent: 5450722 (1995-09-01), Takeshima et al.
patent: 5452576 (1995-09-01), Hamburg et al.
patent: 5472673 (1995-12-01), Goto et al.
patent: 5473887 (1995-12-01), Takeshima et al.
patent: 5473890 (1995-12-01), Takeshima et al.
patent: 5483795 (1996-01-01), Katoh et al.
patent: 5544482 (1996-08-01), Matsumoto et al.
patent: 5551231 (1996-09-01), Tanaka et al.
patent: 5577382 (1996-11-01), Kihara et al.
patent: 5595060 (1997-01-01), Togai et al.
patent: 5598703 (1997-02-01), Hamburg et al.
patent: 5622047 (1997-04-01), Yamashita et al.
patent: 5626014 (1997-05-01), Hepburn et al.
patent: 5626117 (1997-05-01), Wright et al.
patent: 5655363 (1997-08-01), Ito et al.
patent: 5657625 (1997-08-01), Koga et al.
patent: 5693877 (1997-12-01), Ohsuga et al.
patent: 5713199 (1998-02-01), Takeshima et al.
patent: 5715679 (1998-02-01), Asanuma et al.
patent: 5722236 (1998-03-01), Cullen et al.
patent: 5724808 (1998-03-01), Ito et al.
patent: 5732554 (1998-03-01), Sasaki et al.
patent: 5735119 (1998-04-01), Asanuma et al.
patent: 5740669 (1998-04-01), Kinugasa et al.
patent: 5743084 (1998-04-01), Hepburn
patent: 5746049 (1998-05-01), Cullen et al.
patent: 5746052 (1998-05-01), Kinugasa et al.
patent: 5752492 (1998-05-01), Kato et al.
patent: 5771685 (1998-06-01), Hepburn
patent: 5771686 (1998-06-01), Pischinger et al.
patent: 5778666 (1998-07-01), Cullen et al.
patent: 5792436 (1998-08-01), Feeley et al.
patent: 5802843 (1998-09-01), Kurihara et al.
patent: 5803048 (1998-09-01), Yano et al.
patent: 5832722 (1998-11-01), Cullen et al.
patent: 5842340 (1998-12-01), Bush et al.
patent: 5850735 (1998-12-01), Araki et al.
patent: 5865027 (1999-02-01), Hanafusa et al.
patent: 5867983 (1999-02-01), Otani
patent: 5938715 (1999-08-01), Zang et al.
patent: 5970707 (1999-10-01), Sawada et al.
patent: 5974788 (1999-11-01), Hepburn et al.
patent: 5974791 (1999-11-01), Hirota et al.
patent: 5974793 (1999-11-01), Kinagusa et al.
patent: 5983627 (1999-11-01), Asik
patent: 5992142 (1999-11-01), Pott
patent: 5996338 (1999-12-01), Hirota
patent: 6012428 (2000-01-01), Yano et al.
patent: 6014859 (2000-01-01), Yoshizaki et al.
patent: 6023929 (2000-02-01), Ma
patent: 6058700 (2000-05-01), Yamashita et al.
patent: 6082176 (2000-07-01), Kondo et al.
patent: 6092021 (2000-07-01), Ehlbeck et al.
patent: 6119451 (2000-09-01), Vogtlin et al.
patent: 6161530 (2000-12-01), Kakizaki et al.
patent: 6189523 (2001-02-01), Weisbrod et al.
p
Bidner David Karl
Surnilla Gopichandra
Ford Global Technologies Inc.
Lippa Allan J.
Nguyen Tu M.
Russell John D.
Vrablik John J.
LandOfFree
Method for improved performance of a vehicle having an... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for improved performance of a vehicle having an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for improved performance of a vehicle having an... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2966520