Dual-bearing reel spool-locking mechanism

Winding – tensioning – or guiding – Reeling device – Fishing rod reel

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C242S247000

Reexamination Certificate

active

06431482

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates to spool-locking mechanisms in fishing reels; more particularly, to dual-bearing reel spool-locking mechanisms for locking endwise-flanged spools, fitted in the reel body to permit them to spin in either rotational direction, against rotation in at least the line reeling-out direction.
2. Description of Related Art
Dual-bearing reels generally comprise a reel body that attaches to a fishing rod, and a line-winding spool fitted rotatively in the reel body. The spool has a bobbin trunk onto which fishing line is wound, and a pair of flanges formed on the ends of the bobbin trunk.
Among dual-bearing reels having this type of configuration, reels provided with a spool-locking mechanism for recovering the terminal tackle when it gets snagged are known. Conventional spool-locking mechanisms for dual-bearing reels include a rotor that is fitted non-rotatively to the spool shaft, a locking member that is fitted to be shiftable in the radial direction of the rotor and that locks the rotor, and a shifting mechanism that shifts the locking member between two positions. The rotor normally includes a circumferentially spaced plurality of teeth formed on its outer periphery, and is fastened to the spool shaft by suitable fastening means such as a serrations joint. Taking into consideration the available space within the reel, the outer diameter of the rotor cannot be made too large, and is normally smaller than the outer diameter of the bobbin trunk. The locking member is fitted to the reel body to allow it to shift radially with respect to the rotor into a contacting position where it contacts the teeth and a parted position where it is parted away from the teeth.
In a dual-bearing reel configured this way, if the terminal tackle gets snagged, the locking member is shifted into the contacting position by the shifting mechanism to lock the rotor. The spool shaft is thereby rotationally immobilized, and furthermore the spool is non-rotatably interlocked. After the fishing line is reeled and slack in the line taken up, the fishing rod is directed toward the terminal tackle and tugged straight back. Doing this breaks the snag, or the snagged fishing hook(s), fishing line or tangle therein, so that the terminal tackle or a portion of the tackle may be recovered.
In the foregoing conventional spool-locking mechanism, the spool is locked via the rotor, which is fitted non-rotatively to the spool shaft. In fishing rigs with line having a high breaking strength, when attempting to free terminal tackle from a snag, abnormal force therefore acts on the rotor and the locking member, which poses the risk, for example, of damaging the fixed portions of the spool shaft and the rotor. Damage to the fixed portion of the rotor makes the spool-locking mechanism unusable, which means that the spool has to be replaced.
Additionally, if the outer diameter of the rotor is smaller than that of the bobbin trunk, the force acting on the locking member is greater than the tension acting on the fishing line, which risks deforming the locking member.
SUMMARY OF THE INVENTION
An object of the present invention is in keeping a dual-bearing reel spool-locking mechanism from being damaged or deformed even if acted upon by abnormal force.
According to a first aspect of the present invention, a dual-bearing reel spool-locking mechanism for locking a spool, which is flanged endwise with a pair of flange portions and fitted to the dual-bearing-reel reel body to permit rotating in either rotational direction, in at least its line reeling-out direction, includes: a locking piece, a shifting mechanism, and a locking recess. The locking piece is mounted to the reel body such that it can shift between an advanced position and a retracted position. The shifting mechanism is for shifting the locking piece into the advanced position and the retracted position. The locking recess, into which the leading end of the locking piece when advanced into the advanced position is engageable, is provided on the outside face of one the flange portions.
In this dual-bearing reel spool-locking mechanism, if the terminal tackle gets snagged, the shifting mechanism shifts the locking piece from the retracted position into the advanced position. As a result, the locking piece engages the locking recess provided on the outer surface of the spool, and the spool is locked. In this state, the fishing rod is tugged directly backwards to break, for example, the fishhook. When the locking piece is shifted from the advanced position into the retracted position, it is separated from the locking recess and permits the spool to freely rotate, and the tackle can be recovered. In this configuration, the spool is locked by the engaging the locking piece with a locking recess provided on the spool, so that the spool can be directly locked, making the spool-locking mechanism less susceptible to breakage or deformation if acted on by abnormal force. Furthermore, since the locking recess is provided on the outer surface of the flange portion, the locking recess is disposed in a section whose diameter is equal to or greater than the normal winding diameter of the fishing line when being reeled out. For this reason, the force applied to the locking piece is equal to or less than the tension on the fishing line. This makes it even more unlikely that the spool-locking mechanism is broken or deformed.
According to a second aspect of the present invention, in a dual-bearing reel spool-locking mechanism as in the first aspect, a plurality of locking recesses is provided spaced circularly with respect to the spool rotationally. With this configuration, the number of lock positions in the rotating direction is increased, because a plurality of locking recesses is provided.
According to a third aspect of the present invention, in a dual-bearing reel spool-locking mechanism as in the second aspect, the locking recesses are cut-outs that are formed at a certain spacing in a circumferential direction on a ring-shaped lock plate disposed on the outside surface of said flange portion. With this configuration, because the cut-outs are locking recesses formed on the lock plate, their production is simpler than in a configuration in which the locking recesses are directly formed in the spool.
According to a fourth aspect of the present invention, in a dual-bearing reel spool-locking mechanism as in the third aspect, where it opposes the cut-out formations the outside face of the flange portion is sunken beyond the rest. With this configuration, a channel is formed on the outer surface of the spool, making it possible for the locking piece to pass through the locking recess. For this reason, the locking strength is increased.
According to a fifth aspect of the present invention, in a dual-bearing reel spool-locking mechanism as in the first aspect, the locking piece is mounted to the same side of the reel body as the handle. With this configuration, the lock control can be easily actuated with the hand that controls the handle, because the locking piece is disposed on the same side as the handle, so that the control parts are concentrated on one side.
According to a sixth aspect of the present invention, in a dual-bearing reel spool-locking mechanism as in the first aspect, the locking piece is mounted to the reel body and can be shifted into the advanced position and the retracted position along a shifting axis that is parallel to a rotation axis of the spool, and includes a shifting member whose tip engages the locking recesses; the shifting mechanism including a pivot member mounted to the reel body pivotally around the shifting axis, an urging member which urges the shifting member into the advanced position, and a cam mechanism that in response to pivoting the pivot member shifts the shifting member from the advanced position into the retracted position against a spring force of the urging member. With this configuration, when the pivot member is pivoted in one direction, the cam mechanism shifts the shif

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dual-bearing reel spool-locking mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dual-bearing reel spool-locking mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual-bearing reel spool-locking mechanism will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2966393

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.