Pipe coupling

Pipe joints or couplings – Packed – Externally with clamp

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C285S055000, C285S095000, C285S099000, C285S104000, C285S148600, C285S335000, C285S364000

Reexamination Certificate

active

06481762

ABSTRACT:

This invention relates to a pipe coupling and to a pipe joint formed from the pipe coupling.
BACKGROUND OF THE INVENTION
Mechanical couplings for coupling together pipes formed from plastics materials such as polyolefins and polyvinyl chloride are well known. Such couplings typically comprise a sleeve, a compression collar, a seal disposed axially between the sleeve and compression collar and means (e.g. a compression flange and flange bolts) for compressing the compression collar against the seal to deform it radially inwardly and into sealing contact with the pipe. In addition, it is customary for the coupling to contain a gripping ring or other gripping element to prevent the pipe from being pulled out of the coupling.
A problem with such mechanical couplings is that unless the end of the pipe is supported, it can collapse under compression by the sealing assembly. Consequently, it is usual to place a cylindrical supporting member, e.g. formed from a stiffer plastics material or a metal, within the bore of the pipe end, to prevent the pipe end from collapsing when compressed. Such supporting members are, however, considered undesirable for several reasons. For example, the bore upset caused by the presence of the supporting member can interfere with the flow properties of the pipe, particularly with viscous materials or fluids containing solids. With more abrasive fluids such as slurries, any reduction in the pipe bore can cause increased wear and erosion of the pipe wall and supporting member.
A further problem with conventional pipe couplings is that the time taken to tighten a large number of flange bolts to the torque necessary to achieve a good seal between the pipe, gasket and seal can be considerable. It would therefore be advantageous if the number of flange bolts could be reduced, and the torque needed to achieve an efficient seal reduced without any loss of seal integrity.
A still further problem is that conventional pipe couplings of the type mentioned above are not suitable in many cases for use with pipes formed of more brittle materials such as clay, and this is due to the high compressive forces applied to the pipes to achieve an efficient seal which, if applied to brittle pipes could lead to pipe collapse or fracture.
Attempts have been made by the present inventors to obviate the need for the supporting inserts by using pressure responsive sealing systems such as lip seals and O-rings. However, both approaches present additional problems. In the case of O-rings, it can be very difficult in practice to insert a pipe through a seal without using tremendous force, which can often be beyond the capability of one person, or even two people, without special tools. In the case of lip seals, whilst they are easier to install on the pipe, it is not possible to assemble the pipe coupling wholly on one pipe to enable repair sections to be inserted, nor is it possible to allow the last connection to be made between two plain ended sections of pipe.
It is an object of the present invention to overcome the aforementioned problems and to provide a pipe coupling for plastics pipes in which the use of supporting inserts can be avoided without compromising the integrity of the seal.
SUMMARY OF THE INVENTION
Accordingly, in a first aspect, the invention provides a pipe coupling for attachment to a pipe, the coupling comprising a sleeve, at least one end of which is configured to receive therein an end of the pipe; annular sealing means disposed within the end of the sleeve for encircling the pipe end; and compression means for compressing the annular sealing means to form a seal between the pipe and the sleeve; characterised in that the sleeve and/or the sealing means are configured so as to define a leak path between an axially inner portion of the sealing means and the inner surface of the sleeve whereby in use pressurized fluid from the pipe may pass along the leak path so as to pressurize a radially outer surface of the sealing means and urge the axially outer sealing means against the compression means and the axially inner portion of the sealing means against the pipe thereby to enhance the seal between the sealing means and the sleeve, and the sealing means and the pipe.
The pipe couplings of the invention are particularly suited for coupling together plastics pipes and pipes formed from materials which can break or distort such as clay and concrete. Particular examples of plastics pipes which can be connected together using the couplings of the invention include pipes formed from a polyolefin (such as polyethylene) or polyvinylchloride. It has been found that by providing a leak path between the axially inner portion of the seal and the sleeve such that an axially outer portion of the sealing means is compressed against the compression means and the axially inner portion of the sealing means is compressed against the pipe, an effective seal can be formed at a much lower compression force. This in turn means that it is possible to omit the supporting or reinforcing inserts typically used to prevent the collapse of the ends of plastics pipes when coupled together using mechanical couplings. Moreover, in the case of pipes formed from brittle materials such as clay, significantly lower compressive forces can be applied to the gasket without reducing the integrity of the seal, thereby reducing the risk of the pipe breaking under compression.
In this specification, the terms “axially outer” and “axially inner” are used to denote to denote the positions of elements relative to the mid point of the sleeve. An element described as “axially outer” is further from the mid point of the sleeve than an element described as being “axially inner”. Thus the axially outer portion of the sealing means is further from the mid point of the sleeve than the axially inner portion.
The term “radially inner” as used herein with regard to the sealing means refers to a portion or surface which faces the pipe, whereas the term “radially outer” refers to a portion or surface which faces the sleeve. The terms are not intended to mean that the surfaces or portions in question are parallel to the axis of the pipe, although in certain circumstances they may be.
Underlying the present invention is the recognition that by forming a leak path between an axially inner portion of the sealing means and the inner surface of the sleeve, the seal can be made at least partially pressure-responsive—i.e. the pressure of fluid in the pipe can be used to compress the sealing means against the sleeve and the pipe thereby enhancing the strength of the seal.
Either the sleeve or the sealing means, or both, may be configured to provide the leak path. The leak path is typically defined by means of channels formed between the sealing means and the sleeve. Thus, for example, the sleeve may be provided with one or more grooves in the surface thereof which by-pass the axially inner portion of the sealing means. Although one groove may be sufficient to provide the desired degree of leakage, a plurality of grooves can be provided, for example spaced circumferentially around the sleeve. The or each groove can be aligned with the axis of the pipe or at an angle to the axis of the pipe. In one embodiment, for example, the or each groove can follow a helical path around the surface of the sleeve. As an alternative to grooves, the channels can be defined by means of protrusions, e.g. ribs, studs or bosses, on the inner surface of the sleeve which partially space the sealing means away from the surface of the sleeve.
Alternatively, or additionally, the sealing means itself can be configured to provide the leak path. For example, the sealing means can be provided with one or more grooves or passages therein or therethrough which permit the passage of fluid. Such grooves or passages can optionally be reinforced with a stiffer material such as a metal or a non-elastomeric plastics material in order to prevent the grooves or passages collapsing during compression.
The sealing means, sleeve and compression means are preferably configur

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pipe coupling does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pipe coupling, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pipe coupling will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2959776

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.