Odor evaluation method

Measuring and testing – Gas analysis – Odor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S303000, C434S236000, C434S433000

Reexamination Certificate

active

06463786

ABSTRACT:

FIELD OF INVENTION
This invention relates to odour evaluation and odour selection.
BACKGROUND TO THE INVENTION
In designing a new fragrance many considerations have to be taken into account. First and foremost is the need to have an aesthetically acceptable and safe blend of odorous ingredients which perform adequately in the product form which will be used by consumers. However, it is increasingly important that a fragrance is also designed as far as possible to support the intended market positioning and emotional values of a product. For example, the odour may be required to be compatible with and appropriate for a “caring/reassuring” positioning or to connote “fresh, clean, invigorating” . Achieving these objectives lies within the skill and experience of skilled perfumers and perfumery experts, supported by consumer research and related fields. Nevertheless, despite the combined best efforts of all involved it is still remarkably difficult to design and select successful fragrances, particularly in new odour areas.
It is particularly difficult to gain an understanding of how consumers will perceive a fragrance in terms of positioning in advance of launching a product. Some associations can be probed by consumer research techniques such as surveys and focus groups. These improve our understanding of product attributes and consumer attributes, preferences and sensitivity. However, it is likely there will be also implicit, non-conscious associations which the consumer will not be able or willing to verbalise spontaneously and which could elude even the most probing questioning. The objective of this invention is to probe these implicit associations as a basis to aid odour selection and fragrance design.
It is well known that recognition by a person of, for example, an object may be facilitated by the person having seen the object previously, and traditional measures of memory and learning such as free recall and recognition testing can be regarded as assessing such recognition explicitly. This is because explicit memory testing relies on direct instructions to make conscious recollections about specific experiences. However, recent interest has focused on so-called implicit memory testing, using a methodology derived from the early work of Ebbinghaus (1885/1964) on savings in learning time following repeated exposure to verbal stimuli. Implicit tests do not rely on conscious recollection, and implicit learning is inferred indirectly.
One typical demonstration of implicit learning might be to ask participants to read a list of polysyllabic words (eg. fragrance) and on a later occasion ask them to fill in the blanks in word fragments to make a word (eg. fr_g_n_). Typically, participants would complete more of the fragments with list words than with non-list words and claim to be unaware of doing so. This is one example of what is known as reperition priming. Other perceptual implicit tasks include wordstem completion (eg. fra_) and perceptual identification. Conceptual implicit tests provide information that is conceptually related to the studied information but without perceptual similarity between the study and test material (eg. general knowledge questions such as “What is the largest animal on earth?”; generation of category exemplars from a category such as “four-footed animals” or viewing a degraded picture in visual studies). In addition, implicit learning might be inferred from speed or confidence in performance of given tasks.
This implicit/explicit dichotomy is also apparent. in the performance of amnesic patients, who typically show impaired performance on tasks which involve explicit memory and show intact or nearly intact performance on some implicit tests. In addition, dissociative effects for explicit and implicit tasks have been demonstrated from a number of variables in normal participants. Changes in the physical format of the stimuli from study to test have a greater effect on implicit than on explicit tests, tending to reduce the priming effect in the former. Explicit and implicit tasks also are affected differently by variations in orienting instructions and sources of interference during study. In general orienting to semantic features rather than physical features facilitates performance on explicit tests more than implicit tests. Introduction of potentially interfering stimuli has a larger detrimental effect on performance of explicit tasks than on implicit tasks.
Whilst the crucial distinction between implicit and explicit memory and learning seems to be the involvement of conscious recollection, this is a descriptive distinction rather than explanatory. As Schacter (1987) noted, implicit and explicit memory “are descriptive concepts that are primarily concerned with a person's psychological experience at the time of retrieval”. Theoretical accounts, whilst assuming some sort of underlying ‘activation of representation’ notion, emphasise either a multiple memory systems approach or a memory processes approach. System theorists defme a memory system as a collection correlated functions served by anatomically distinct brain structures. By this type of account, explicit memory would, depend on what Cohen (1984) called declarative knowledge “in a system . . . in which information is . . . first processed or encoded, then stored in some explicitly accessible form for later use, and then ultimately retrieved upon demand”. By contrast, implicit memory would be said to utilise procedural knowledge which is involved when “experience serves to influence the organisation of processes that guide performance without access to the knowledge that underlies the performance”. Alternatively, processing theorists assume that the mental steps involved in accessing memories differ for different task types, and that assumptions about multiple memory systems are unwarranted.
Regardless of the mechanics involved, substantial behavioural data on visual and verbal memory has been accumulated. Despite an extensive literature on implicit memory, and the development of increasingly subtle implicit test procedures, it is only recently that attempts to demonstrate priming effects for odour have been reported. Schab and Crowder (1995) reported the first experiments in odour priming. In their first experiment they examined speed and accuracy of odour identification (naming). They found that presentation of common odours together with the name of the odour enhanced both the speed and accuracy of subsequent odour identification as compared with initial presentation of the odour name only. However, the observed benefit was weak compared with analogous effects in other modalities, such as identification of pictures of common objects. This was the only experiments to show a strong priming effect. The remaining experiments led Schab and Crowder to conclude that after multiple experiments, demonstration of implicit memory for odours was elusive and inconsistent.
The present inventors have now carried out further experiments that demonstrate that implicit memory does exist for odours, as can be shown by implicit memory testing, eg speed of response and confidence in response in subsequent odour recognition tests. These new experiments replicate and extend the successful Schab and Crowder priming experiment noted above. Schab and Crowder compared the effects of presenting an odour along with its name to presenting the odour name only on subsequent suprathreshold odour identification. As already noted, both speed and accuracy of naming of odours was enhanced by prior presentation of the odours. We compared the effects of prior presentation of odours under several presentation conditions on speed, accuracy and confidence in both odour identification and recognition. In other words, we examined priming of both explicit tests and implicit measures. Specifically, the presentation conditions were odour plus name, odour only, odour name only, and odour with verbal suppression. The last condition was an attempt to introduce a pure odour condition, eliminating the possibility of non-percept

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Odor evaluation method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Odor evaluation method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Odor evaluation method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2959618

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.