Electronic apparatus having heat sink for cooling heat...

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C165S080300, C312S236000, C361S690000, C454S184000

Reexamination Certificate

active

06496369

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an electronic apparatus such as a portable computer including a heat generating component, and particularly to a structure for improving the cooling performance of the heat generating component.
2. Description of the Related Art
Recently, various portable electric apparatuses represented by notebook-type portable computers, mobile information apparatuses, and the like have been supplied. These electronic apparatuses are equipped with MPUs (Micro Processing Units) for processing multimedia information. In these MPUs, the electric power consumption has steadily increased in accordance with the increase of the processing speed and the number of multiple functions, and the heat generation amount during operation tends to increase rapidly. Heat radiation of the MPU must hence be improved in order to guarantee a stable operation of the MPU. Therefore, various heat-radiation/cooling means such as a heat sink, electric fan, and the like are indispensable.
Conventionally, in a portable computer mounting a MPU having a large heat generation amount, a heat sink is provided on the circuit board equipped with the MPU. The heat sink is thermally connected with the MPU, and cooling air is forcedly sent to the heat sink through the electric fan.
In this conventional cooling method, cooling air serves as a medium which removes heat from the MPU. In many MPUS, therefore, the cooling performance depends on the current strength of cooling air. Meanwhile, portable computers are designed to have a thin compact housing for containing the MPU, a heat sink, and the like. It is therefore difficult to secure an ideal air flow inside the housing, so that the air can be properly exhausted. As a result of this, the lack of proper ventilation of the cooling air leads to a rise in the temperature of the MPU. Consequently, it is impossible to attain a satisfactory cooling performance for the MPU.
A portable computer having an exhaust port whose open area is expandable upon requirements is conventionally known as a measure which solves the above problem. In this portable computer, a part of the peripheral wall of the housing is constructed by a movable wall, and an end of this movable wall is exposed to the exhaust port. The movable wall can shift between a first position in which the exhaust port is defined to be a standard shape and a second position at which the exhaust port is enlarged more than the standard shape. When the movable wall is shifted from the first position to the second position, the open area of the exhaust port is increased so that the cooling air is more easily exhausted.
Therefore, cooling air can easily exit the housing, and accordingly, the amount of cooling air guided to the heat sink increases. Thus, thermal exchange can be efficiently carried out between cooling air and the heat sink, so that the cooling performance of the MPU can be improved.
However, according to conventional portable computers, an increase of the flow amount is very small in comparison with the heat generation amount, although the flow amount of cooling air guided to the heat sink is increased. In addition, the heat radiation area of the heat sink which contributes to heat radiation does not change but is maintained constantly. Therefore, a remarkable improvement of the cooling performance of the MPU cannot be expected even if the flow amount of cooling are guided to the heat sink increases.
MPUs for use in portable computers are expected to attain higher speeds and perform more functions in the near future. Hence, the heat generation amount of the MPU is assumed to increase remarkably. Therefore, it cannot be said that the conventional cooling method of merely expanding the open area of the exhaust port sufficiently respond to the increase of the heat generation amount of the MPU. Consequently, it is considered that the cooling performance of the MPU will be insufficient or be limited.
BRIEF SUMMARY OF THE INVENTION
The present invention has an object of providing an electronic apparatus capable of greatly improving the heat radiation performance of a heat sink and of maintaining a proper operating environment temperature of a heat generating component.
To achieve the above object, an electronic apparatus according to the first aspect of the present invention comprises: a housing having a ventilation port and being able to be displaced between a first usage form in which the ventilation port is set in a standard opening shape, and a second usage form in which the ventilation port is enlarged to be larger than the standard opening shape; a heat generating component contained in the housing; and a heat sink thermally connected with the heat generating component and contained in the housing so as to face the ventilation port, the heat sink having a plurality of heat radiation fins whose heat radiation range expands when the housing is displaced from the first usage form to the second usage form and is reduced when the housing is displaced from the second usage form to the first usage form.
In this structure, heat from the heat generating component is transferred to the heat sink by thermal conduction, and is diffused in the housing through the surface of the heat sink and the heat radiation fins. When the housing of the electronic apparatus is displaced from the first usage form to the second usage form, the heat radiation fins are deformed so as to enlarge their heat radiation range. In this manner, the contact area between the heat radiation fins and air increases so that the heat from the heat generating component can be efficiently radiated.
Therefore, when the heat generation amount of the heat generating component increases, the heat radiation performance of the heat sink can be improved so as to comply with increase of the heat generation amount, by displacing the housing. Accordingly, it is possible to maintain a sufficient cooling performance of the heat generating component even if the installation space for the heat sink is limited due to downsizing of the housing.
To achieve the above object, an electronic apparatus according to the second aspect of the present invention comprises: a housing including a heat generating component; and a heat sink contained in the housing for receiving heat from the heat generating component. The heat sink includes a plurality of heat radiation fins made of shape-memory alloy, the heat radiation fins stand up with an interval maintained between each other when the heat sink receives heat from the heat generating component and a temperature of the heat radiation fins reaches a shape-memory range, and the heat radiation fins are elastically deformed when the temperature of the heat radiation fins exits the shape-memory range.
In this structure, heat from the heat generating component is transferred to the heat sink by thermal conduction, and is diffused in the housing
4
through the surface of the heat sink and the heat radiation fins. In a stage before the temperature of the heat radiation fins reaches a shape-memory temperature, the heat radiation fins are in a flexible state and can be deformed into a free shape. Therefore, the heat radiation fins are deformed into a shape in which their heat radiation range is reduced while the heat generation amount of the heat generating component is small.
When the temperature of the heat radiation fins reaches the shape-memory temperature, these heat radiation fins stand up with an interval maintained between each other due to the shape-memory effect, so that the heat radiation range expands. Accordingly, adjacent heat radiation fins move apart from each other, so that gaps which allows air to pass are formed between the heat radiation fins each other. As a result of this, the contact area between the heat radiation fins and air increases so that the heat transferred to the heat radiation fins from the heat generating component can be efficiently radiated. Therefore, the heat radiation performance of the heat sink can be improved so as to comply

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Electronic apparatus having heat sink for cooling heat... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Electronic apparatus having heat sink for cooling heat..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electronic apparatus having heat sink for cooling heat... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2958242

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.