Target and background capture methods with amplification for...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reissue Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S005000, C435S007100, C435S015000, C435S091200, C435S174000, C536S024300, C536S024320, C536S024330, C536S025400

Reissue Patent

active

RE037891

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention pertains to methods, reagents, compositions, kits, and instruments for use in capturing target molecules. In particular, the present invention relates to methods, reagents, compositions, and kits for capturing deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) from clinical samples. Embodiments of the present invention provide methods for rapid, sensitive detection of nucleic acid targets in clinical samples adaptable to non-radioactive labeling techniques and automation.
The following definitions are provided to facilitate an understanding of the present invention. The term “biological binding pair” as used in the present application refers to any pair of molecules which exhibit natural affinity or binding capacity. For the purposes of the present application, the term “ligand” will refer to one molecule of the biological binding pair and the term “antiligand” or “receptor” will refer to the opposite molecule of the biological binding pair. For example, without limitation, embodiments of the present invention have applications in nucleic acid hybridization assays where the biological binding pair includes two complementary strands of polynucleic acid. One of the strands is designated the ligand and the other strand is designated the antiligand. However, the biological binding pair may include antigens and antibodies, drugs, and drug receptor sites and enzymes and enzyme substrates.
The term “probe” refers to a ligand of known qualities capable of selectively binding to a target antiligand. As applied to nucleic acids, the term “probe” refers to a strand of nucleic acid having a base sequence complementary to a target strand.
The term “label” refers to a molecular moiety capable of detection including, by way of example, without limitation, radioactive isotopes, enzymes, luminescent agents, and dyes. The term “agent” is used in a broad sense, including any molecular moiety which participates in reactions which lead to a detectable response. The term “cofactor” is used broadly to include any molecular moiety which participates in reactions with the agent.
The term “retrievable” is used in a broad sense to described an entity which can be substantially dispersed within a medium and removed or separated from the medium by immobilization, filtering, partitioning, or the like.
The term “support” when used alone includes conventional supports such as filters and membranes as well as retrievable supports.
The term “reversible,” in regard to the binding of ligands and antiligands, means capable of binding or releasing upon imposing changes which do not permanently alter the gross chemical nature of the ligand and antiligand. For example, without limitation, reversible binding would include such binding and release controlled by changes in pH, temperature, and ionic strength which do not destroy the ligand or antiligand.
The term “amplify” is used in the broad sense to mean creating an amplification product which may include by way of example, additional target molecules, or target-like molecules which are capable of functioning in a manner like the target molecule, or a molecule subject to detection steps in place of the target molecule, which molecules are created by virtue of the presence of the target molecule in the sample. In the situation where the target is a polynucleotide, additional target, or target-like molecules, or molecules subject to detecting can be made enzymatically with DNA or RNA polymerases or transcriptases.
Genetic information is stored in living cells in threadlike molecules of DNA. In vivo, the DNA molecules is a double helix, each strand of which is a chain of nucleotides. Each nucleotide is characterized by one of four bases: adenine (A), guanine (G), thymine (T), and cytosine (C). The bases are complementary in the sense that, due to the orientation of functional groups, certain base pairs attract and bond to each other through hydrogen bonding. Adenine in one strand of DNA pairs with thymine in an opposing complementary strand. Guanine in one strand of DNA pairs with cytosine in an opposing complementary strand. In RNA, the thymine base is replaced by uracil (U) which pairs with adenine in an opposing complementary strand.
DNA consists of covalently linked chains of deoxyribonucleotides and RNA consists of covalently linked chains or ribonucleotides. The genetic code of a living organism is carried upon the DNA strand in the sequence of the base pairs.
Each nucleic acid is linked by a phosphodiester bridge between the five prime hydroxyl group of the sugar of one nucleotide and the three prime hydroxyl group of the sugar of an adjacent nucleotide. Each linear strand of naturally occurring DNA or RNA has one terminal end having a free five prime hydroxyl group ad another terminal end having a three prime hydroxyl group. The terminal ends of polynucleotides are often referred to as being five prime termini or three prime termini in reference to the respective free hydroxyl group. Complementary strands of DNA and RNA form antiparallel complexes in which the three prime terminal end of one strand is oriented to the five prime terminal end of the opposing strand.
Nucleic acid hybridization assays are based on the tendency of two nucleic acid strands to pair at complementary regions. Presently, nucleic acid hybridization assays are primarily used to detect and identify unique DNA or RNA base sequences or specific genes in a complete DNA molecule, in mixtures of nucleic acid, or in mixtures of nucleic acid fragments.
The identification of unique DNA or RNA sequences or specific genes within the total DNA or RNA extracted from tissue or culture samples may indicate the presence of physiological or pathological conditions. In particular, the identification of unique DNA or RNA sequences or specific genes, within the total DNA or RNA extracted from human or animal tissue, may indicate the presence of genetic diseases or conditions such as sickel cell anemia, tissue compatibility, cancer and precancerous states, or bacterial or viral infections. The identification of unique DNA or RNA sequences or specific genes within the total DNA or RNA extracted from bacterial cultures or tissue containing bacteria may indicate the presence of antibiotic resistance, toxins, viruses, or plasmids, or provide identification between types of bacteria.
Thus, nucleic acid hybridization assays have great potential in the diagnosis and detection of disease. Further potential exists in agriculture and food processing where nucleic acid hybridization assays may be used to detect plant pathogenesis or toxin-producing bacteria.
One of the most widely used nucleic acid hybridization assay procedures is known as the Southern blot filter hybridization method or simply, the Southern procedure (Southern, E., J. Mol. Biol. I, 98, 503, 1975). The Southern procedure is used to identify target DNA or RNA sequences. This procedure is generally carried out sheets. The immobilized sample RNA or DNA is contacted with radio-labeled probe strands of DNA having a base sequence complementary to the target sequence carrying a radioactive moiety which can be detected. Hybridization between the probe and the sample DNA is allowed to take place.
The hybridization process is generally very specific. The labeled probe will not combine with sample DNA or RNA if the two nucleotide entities do not share substantial complementary base pair organization standard. Hybridization can take from three to 48 hours depending on given conditions.
However, as a practical matter there is always non-specific binding of the labeled probe to supports which appears as “background noise” on detection. Background noise reduces the sensitivity of an assay. Unhybridized DNA probe is subsequently washed away. The nitrocellulose sheet is placed on a sheet of X-ray film and allowed to expose. The X-ray film is developed with the exposed areas of the film identifying DNA fragments which have been hybridized to the DNA probe and therefore have the base pair sequence of interest.
The use

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Target and background capture methods with amplification for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Target and background capture methods with amplification for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Target and background capture methods with amplification for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2957254

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.