Games using tangible projectile – Golf – Ball
Reexamination Certificate
2001-07-31
2002-12-17
Zitomer, Fred (Department: 1713)
Games using tangible projectile
Golf
Ball
C260S998140, C473S371000, C473S378000, C525S196000, C525S201000, C525S221000, C525S330200
Reexamination Certificate
active
06494792
ABSTRACT:
FIELD OF INVENTION
The present invention relates to golf balls and, more particularly, to improved golf ball covers made from blends of specific high acid ionomers. The improved golf ball covers are useful for producing golf balls, particularly multi-piece balls, exhibiting enhanced travel distance while maintaining the playability and/or durability characteristics necessary for repetitive play.
BACKGROUND OF THE INVENTION
Ionomeric resins are polymers containing interchain ionic bonding. As a result of their toughness, durability, and flight characteristics, various ionomeric resins sold by E. I. DuPont de Nemours & Company under the trademark “Surlyn®” and more recently, by the Exxon Corporation (see U.S. Pat. No. 4,911,451) under the trademarks “Escor®” and the tradename “Iotek”, have become the materials of choice for the construction of golf ball covers over the traditional “balata” (trans polyisoprene, natural or synthetic) rubbers. The softer balata covers, although exhibiting enhanced playability properties, lack the durability properties required for repetitive play.
Ionomeric resins are generally ionic copolymers of an olefin, such as ethylene, and a metal salt of an unsaturated carboxylic acid, such as acrylic acid, methacrylic acid or maleic acid. In some instances, an additional softening comonomer such as an acrylate can also be included to form a terpolymer. The pendent ionic groups in the ionomeric resins interact to form ion-rich aggregates contained in a non-polar polymer matrix. The metal ions, such as sodium, zinc, magnesium, lithium, potassium, calcium, etc. are used to neutralize some portion of the acid groups in the copolymer resulting in a thermoplastic elastomer exhibiting enhanced properties, i.e. improved durability, etc. for golf ball construction over balata.
The ionomeric resins utilized to produce cover compositions can be formulated according to known procedures such as those set forth in U.S. Pat. No. 3,421,766 or British Patent No. 963,380, with neutralization effected according to procedures disclosed in Canadian Patent Nos. 674,595 and 713,631, wherein the ionomer is produced by copolymerizing the olefin and carboxylic acid to produce a copolymer having the acid units randomly distributed along the polymer chain. Broadly, the ionic copolymer generally comprises one or more &agr;-olefins and from about 9 to about 20 weight percent of &agr;, &bgr;-ethylenically unsaturated mono- or dicarboxylic acid, the basic copolymer neutralized with metal ions to the extent desired.
In this regard, generally at least 20% of the carboxylic acid groups of the copolymer are neutralized by the metal ions (such as sodium, potassium, zinc, calcium, magnesium, and the like) and exist in the ionic state. Suitable olefins for use in preparing the ionomeric resins include ethylene, propylene, butene-1, hexene-1, and the like. Unsaturated carboxylic acids include acrylic, methacrylic, ethacrylic, &agr;-chloroacrylic, crotonic, maleic, fumaric, itaconic acids, and the like. The ionomeric resins utilized in the golf ball industry are generally copolymers of ethylene with acrylic (i.e. Escor®) and/or methacrylic (i.e. Surlyn®) acid. In addition, two or more types of ionomeric resins may be blended into the cover compositions in order to produce the desired properties of the resulting golf balls.
Along this line, the properties of the cover compositions and/or the ionomeric resins vary according to the type and amount of the metal cation, the molecular weight, the composition of the base resin (i.e. the nature of the relative content of the olefin, the unsaturated carboxylic acid groups, etc.), the amount of acid, the degree of neutralization and whether additional ingredients such as reinforcement agents or additives are utilized. Consequently, the properties of the ionomer resins can be controlled and varied in order to produce golf balls having different playing characteristics, such as differences in hardness, playability (i.e. spin, feel, click, etc.), durability (i.e. impact and/or cut resistance), and resilience (i.e. coefficient of restitution).
However, while there are currently more than fifty commercial grades of ionomers available from DuPont and Exxon with a wide range of properties which vary according to the type and amount of metal cations, molecular weight, composition of the base resin (i.e. relative content of ethylene and methacrylic and/or acrylic acid groups), the degree of neutralization and additive ingredients such as reinforcement agents, etc., a great deal of research continues in order to develop golf ball cover compositions exhibiting not only the playability characteristics previously associated with the balata cover, but also the improved impact resistance and carrying distance properties produced by the ionomeric resins. Thus, an object of the present invention is to provide golf ball cover compositions which, when utilized in golf ball construction, produce balls exhibiting improved travel distance while maintaining satisfactory playability and durability properties.
In enhancing the distance a golf ball will travel when hit, there are a variety of factors which are considered. The coefficient of restitution, along with ball size, weight and additional factors such as club head speed, angle of trajectory, and ball aerodynamics (i.e., dimple pattern), generally determine the distance a ball will travel when hit. Since club head speed and the angle of trajectory are not factors easily controllable, particularly by golf ball manufacturers, the factors of concern among manufacturers are the coefficient of restitution and the surface dimple pattern of the ball.
A golf ball's coefficient of restitution (C.O.R.) is the ratio of the relative velocity of the ball after direct impact to that before impact. One way to measure the coefficient of restitution is to propel a ball at a given speed against a hard massive surface, and measure its incoming velocity and outgoing velocity. The coefficient of restitution is defined as the ratio of the outgoing velocity to incoming velocity of a rebounding ball and is expressed as a decimal. As a result, the coefficient of restitution can vary from zero to one, with one being equivalent to an elastic collision and zero being equivalent to an inelastic collision.
The coefficient of restitution of a one-piece golf ball is a function of the ball's composition. In a two-piece or a multi-layered golf ball, the coefficient of restitution is a function of the core, the cover and any additional layer. While there are no United States Golf Association (U.S.G.A.) limitations on the coefficient of restitution values of a golf ball, the U.S.G.A. requires that the golf ball cannot exceed an initial velocity of 255 feet/second. As a result, golf ball manufacturers generally seek to maximize the coefficient of restitution of a ball without violating the velocity limitation.
In various attempts to produce a high coefficient of restitution golf ball exhibiting the enhanced travel distance desired, the golfing industry has blended various ionomeric blends. However, many of these blends do not exhibit the durability and playability characteristics necessary for repetitive play and/or the enhanced travel distance desired.
The present invention is directed to the discovery that specific ionomer resins containing relative high amounts of acid (i.e. greater than 16 weight percent acid, preferably from about 17 to about 25 weight percent acid, and more preferably from about 18.5 to about 21.5 weight percent) and partially neutralized with sodium, zinc and magnesium ions, produce, when blended and melt processed according to the parameters set forth below, cover compositions exhibiting enhanced coefficient of restitution values when compared to low acid ionomers, or blends of low acid ionomer resins containing 16 weight percent acid or less. The new high acid ionomer cover compositions produce golf balls which exhibit properties of enhanced carrying distance (i.e. possess higher coefficient of restitution values) over known
Spalding Sports Worldwide Inc.
Zitomer Fred
LandOfFree
Golf ball covers containing high acid ionomers does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Golf ball covers containing high acid ionomers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Golf ball covers containing high acid ionomers will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2955109