Flexible chip card with display

Registers – Records – Conductive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C235S375000, C235S380000

Reexamination Certificate

active

06402039

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to data or transaction cards containing semiconductor processors and/or memory chips.
Such cards are commonly referred to as chip cards (or smart cards). They are typically wallet-size and contain a microchip. Often, there are electrical contacts on the surface of the card through which communications are made between an external chip card device and the semiconductor chip, but there are also wireless chip cards in which communication is made using a wireless transceiver located within the card. Chip cards are now being used in numerous applications, including telecommunications, government benefits programs, health care, public transportation, universities, and vending machines.
One of the widespread uses of chip cards today is as a stored-value card, which contains monetary value in the microchip embedded in the card. For example, each time a consumer uses a chip card in a vending machine, the amount of the purchase is deducted from the cash balance stored in the microchip on the chip card. One application for such stored-value chip cards is eliminating the need for people to carry around small coins or bills and speed up the time it takes to consummate small cash transactions. However, current chip cards offer no built-in mechanism for viewing the cash balance remaining on the chip card. This reduces the convenience and ease of use of chip cards.
Initially, a consumer could only determine the cash balance on a chip card by taking the card to a vending machine, retail location, or other point of purchase equipped with a chip card reader. Several portable chip card readers were developed to provide chip card users with a convenient way to determine the cash balance on their chip cards.
Although these portable chip card reading devices, including the ones shown in U.S. Pat. No. 5,015,830 to Masuzawa and U.S. Pat. No. 5,517,011 to Vandenengel, make chip cards more convenient to use than without such devices, these chip card readers still suffer from numerous disadvantages. For example, some require battery replacement at regular intervals; some portable card readers are sealed units in which the batteries cannot be replaced, thus requiring the consumer to purchase a new card reader every time the batteries wear out. Many chip cards require their own specially programmed card reader; if a consumer has several types of chip cards in his or her wallet, they could also require several different chip card readers in their wallet, which would be bulky, inconvenient, and very impractical to use. Current chip card readers are inconvenient to use, as they either require the consumer to insert the chip card into the reader each time the consumer wants to check the balance, or the consumer must keep the chip card in the reader at all times, press a button to check the balance, and then remove the card from the reader in order to consummate a transaction. They require the consumer to carry a separate device, which can easily be lost or forgotten, leaving the consumer without any way to spontaneously determine the cash balance on the chip card. They are costly devices in relation to the total cost of manufacturing a chip card. It is easy to forget the cash balance on the chip card, which requires the consumer to frequently recheck the balance using the portable balance reader.
Displays have been suggested for data cards. U.S. Pat. No. 4,954,985 to Yamazaki discloses a card with a ferroelectric liquid crystal memory region and a ferroelectric liquid crystal display region. U.S. Pat. No. 4,746,787 to Suto discloses an IC Card with a display and an integrated circuit containing a processor and memory. Neither patent suggests a flexible display element or flexible card body. Yamazaki refers to using both Corning 7059 glass or plastic for the card body, without any indication that one is preferable to the other. Suto suggests plastic for the card substrate but the disclosed liquid crystal display would fracture if the card underwent flexing of the type and magnitude experienced by a card during normal use, handling, and storage (e.g., storage in a pocket, wallet, or purse).
In the case of chip cards used in applications other than stored-value, such as health care, currently available chip cards require the user to go to a location with a chip card reader in order to display information contained in the microchip on the card. If a health care chip card holder has a serious medical condition and is taking medication for that condition, an emergency caregiver must have access to a chip card reader to find out what medication the patient is taking or what medical condition the person has that could be critical in deciding what emergency treatment to give the patient. Today, many chip cards contain information that would be very valuable if it could be instantly accessed, but which loses its value once the card user has to search and take the time to find a chip card reader in order to access the information.
SUMMARY OF THE INVENTION
The invention provides a chip card with a practical, built-in display. The card can undergo flexing of the type and magnitude experienced by a card during normal use, handling, and storage (e.g., storage in a pocket, wallet, or purse) without permanent damage to the display element or permanent loss of the displayed information.
In general, the invention features a chip card including a flexible body; at least one semiconductor chip supported within the flexible body and comprising a memory for storing the information; a display element capable of displaying at least a portion of the information stored in the semiconductor chip, the display element being supported within the flexible body and comprising display areas viewable from at least one side of the chip card; circuitry for controlling the display element; the chip card being capable of undergoing flexing of the type and magnitude experienced by a card during normal use, handling, and storage (e.g., storage in a pocket, wallet, or purse) without permanent damage to the display element and without permanent loss of the displayed information.
One or more of the following features may be incorporated into embodiments of the invention: the display element, itself, can be made tolerant of such flexing, or the display can be located in an area of the chip card that does not undergo substantial flexing (e.g., a corner).
The display element may have the capability to continue displaying information after electrical power is removed from it. The display element may offer a multicolor display. The display element may offer stereoscopic effects, for example, by layering a barrier strip over the display element. Additionally, the card may feature multiple displays.
Contacts exposed on a surface of the card can be provided for establishing communication with the semiconductor chip. Alternatively, a wireless communication element can be provided within the card.
Internal connection elements may be provided for connecting the semiconductor chip to the display element. The internal connection elements are preferably configured to withstand flexing.
The flexible body may be constructed from various materials, including plastic, paper, reinforced paper, and cardboard. If from plastic, the material may include polyvinyl chloride, polyester, ABS, or polycarbonate.
A substantially transparent layer of protective plastic may be provided to cover the display areas of the display element.
An additional information storage medium (e.g., bar code symbol, magnetic stripe element) may be provided in addition to the semiconductor chip.
The card may include a power source. The power source may be replaceable and/or rechargeable. The card may provide a mechanism to conserve power (e.g., a kickstart circuit). The power source may provide multi-media features. For example, the power source may drive a speaker, a microphone, or cause the display element to produce a series of images (e.g., a video clip) on the display element. The power supply may also power communication elements in a con

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flexible chip card with display does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flexible chip card with display, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flexible chip card with display will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2954602

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.