Active solid-state devices (e.g. – transistors – solid-state diode – Integrated circuit structure with electrically isolated... – Including dielectric isolation means
Reexamination Certificate
1998-09-15
2002-08-13
Hardy, David (Department: 2815)
Active solid-state devices (e.g., transistors, solid-state diode
Integrated circuit structure with electrically isolated...
Including dielectric isolation means
C257S506000, C257S647000
Reexamination Certificate
active
06433400
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to integrated circuit fabrication and, more particularly, to an improved process of incorporating barrier atoms within active areas of a semiconductor substrate laterally adjacent to a trench isolation structure to enhance properties of the isolation structure and of transistors within the active areas.
2. Description of the Relevant Art
The fabrication of an integrated circuit involves placing numerous devices in a single semiconductor substrate. Select devices are interconnected by conductors which extend over a dielectric that separates or “isolates” those devices. Implementing an electrical path across a monolithic integrated circuit thus involves selectively connecting devices which are isolated from each other. When fabricating integrated circuits it is therefore necessary to isolate devices built into the substrate from one another. From this perspective, isolation technology is one of the critical aspects of fabricating a functional integrated circuit.
A popular isolation technology used for a MOS integrated circuit involves the process of locally oxidizing silicon. Local oxidation of silicon, or LOCOS processing involves oxidizing field regions of a silicon-based substrate between device areas. The oxide grown in the field or isolation regions is termed “field oxide”. The field oxide is grown during the initial stages of integrated circuit fabrication, before source and drain implants are placed in device areas or active areas. By growing a thick field oxide in field regions pre-implanted with a channel-stop dopant, LOCOS processing serves to prevent the establishment of parasitic channels in the field regions.
While LOCOS has remained a popular isolation technology, there are several problems associated with LOCOS. First, a growing field oxide extends laterally as a bird's-beak structure. In many instances, the bird's-beak structure can unacceptably encroach into the device active area. Second, the pre-implanted channel-stop dopant redistributes during the high temperatures associated with field oxide growth. Redistribution of channel-stop dopant primarily affects the active area periphery, causing problems known as narrow-width effects. Third, the thickness of field oxide causes large elevational disparities across the semiconductor topography between field and active regions. Topographical disparities cause planarity problems which become severe as circuit critical dimensions shrink. Lastly, thermal oxide growth is significantly thinner in small field regions(i.e., field areas of small lateral dimension) relative to large field regions. In small field regions, a phenomenon known as field-oxide-thinning effect therefore occurs. Field-oxide-thinning produces problems with respect to field threshold voltages, interconnect-to-substrate capacitance, and field-edge leakage in small field regions between closely spaced active areas.
Many of the problems associated with LOCOS technology are alleviated by an isolation technique known as the “shallow trench process”. The shallow trench process is particularly suited for isolating densely spaced active devices having field regions less than one micron in lateral dimension. Conventional trench processes involve the steps of etching a silicon substrate surface to a relatively shallow depth, e.g., between 0.2 to 0.5 microns, and then refilling the shallow trench with a deposited dielectric. The trench is then planarized to complete formation of the isolation structure. The trench process eliminates bird's-beak and channel-stop dopant redistribution problems. In addition, the isolation structure is fully recessed, offering at least a potential for a planar surface. Still further, field-oxide thinning is reduced in narrow isolation spaces, and the threshold voltage is constant as a function of channel width.
While the conventional trench isolation process has many advantages over LOCOS, the trench process also has problems. Because trench formation involves etching of the silicon substrate, it is believed that dangling bonds and an irregular grain structure form in the silicon substrate near the walls of the trench. Such dangling bonds may promote trapping of charge carriers within the active areas of an operating transistor. As a result, charge carrier mobility may be hindered, and the output current, I
D
, of the transistor may decrease to an amount at which optimum device performance is unattainable.
Further, during subsequent anneal steps (e.g., thermal oxidation for gate oxide formation), the irregular grain structure may provide migration avenues through which oxygen atoms can pass from the field oxide to the active areas. Moreover, the dangling bonds may provide opportune bond sites for diffusing oxygen atoms, thereby promoting accumulation of oxygen atoms in the active areas near the edges of field oxide. Oxygen atoms present in active areas of the silicon may function as electron donors. Thus, inversion of silicon may occur in subsequently formed p-type active areas near the walls of the isolation trench. Further, the edge of a device may not conduct as much current as the interior portion of the device. Therefore, more charge to the gate of a transistor may be required to invert the channel than if no inversion occurred, causing threshold voltage, V
T
, to shift undesirably from its design specification.
In a subsequent processing step the semiconductor topography may be subjected to a high temperature anneal to activate impurity species in the active areas and to annihilate crystalline defect damage of the substrate. Unfortunately, impurity species, such as boron, in the active areas may undergo diffusion into the isolation region when subjected to high temperatures. As a result, the threshold voltage in the isolation region may decrease. Thus, migration of impurities into the isolation region may lead to current inadvertently flowing between active areas, defeating the purpose of having the trench isolation region in the first place.
It is therefore desirable to develop a technique for forming a trench isolation structure between active areas in which problems related to dangling bonds and irregular grain structure in the active areas are alleviated. Such a technique is necessary to inhibit charge carriers and oxygen donors from being entrapped in the active areas. Yet further, it is desirable that impurity species be prevented from migrating into the trench isolation structure so that current leakage between active areas may be inhibited.
SUMMARY OF THE INVENTION
The problems noted above are in large part solved by the method hereof for isolating active areas within a semiconductor substrate. That is, the present invention contemplates the formation of a trench isolation structure between active areas of a semiconductor substrate. Advantageously, barrier atoms are incorporated in the active areas adjacent to the walls of the trench to enhance the properties of both the isolation structure and of device performance within the active areas adjacent the isolation structures.
According to an embodiment of the present invention, a semiconductor topography is provided in which a masking layer is formed above a semiconductor substrate. An opening is formed vertically through the masking layer, and a dielectric spacer material is deposited across the exposed surface of the topography. The spacer material is then anisotropically etched to form spacers directly adjacent to opposed sidewall surfaces of the masking layer opening. The spacers are strategically placed above regions of the substrate into which barrier atoms are to be subsequently incorporated. An isolation trench is then etched into the semiconductor substrate between the spacers. The resulting trench is relatively shallow and is interposed between ensuing active areas of the semiconductor substrate.
An oxide (i.e., SiO
2
) layer may be thermally grown within the trench on the exposed edges of the substrate. Oxide may then be deposited using chemical vapor deposition (“CVD”)
Fulford H. Jim
Gardner Mark I.
Wristers Derick J.
Advanced Micro Devices , Inc.
Conley Rose & Tayon
Daffer Kevin L.
Hardy David
LandOfFree
Semiconductor fabrication employing barrier atoms... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Semiconductor fabrication employing barrier atoms..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor fabrication employing barrier atoms... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2952611