Inkjet printhead with nozzle pokers

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S020000

Reexamination Certificate

active

06488362

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of fluid ejection devices such as inkjet printers and, in particular, discloses the utilization of a poker on the ink ejection paddle.
BACKGROUND OF THE INVENTION
Many different types of printing have been invented, a large number of which are presently in use. The known forms of printers have a variety of methods for marking the print media with a relevant marking media. Commonly used forms of printing include offset printing, laser printing and copying devices, dot matrix type impact printers, thermal paper printers, film recorders, thermal wax printers, dye sublimation printers and ink jet printers both of the drop on demand and continuous flow type. Each type of printer has its own advantages and problems when considering cost, speed, quality, reliability, simplicity of construction and operation etc.
In recent years, the field of ink jet printing, wherein each individual pixel of ink is derived from one or more ink nozzles has become increasingly popular primarily due to its inexpensive and versatile nature.
Many different techniques of ink jet printing have been invented. For a survey of the field, reference is made to an article by J Moore, “Non-Impact Printing: Introduction and Historical Perspective”, Output Hard Copy Devices, Editors R Dubeck and S Sherr, pages 207-220 (1988).
Ink Jet printers themselves come in many different types. The utilisation of a continuous stream ink in ink jet printing appears to date back to at least 1929 wherein U.S. Pat. No. 1,941,001 by Hansell discloses a simple form of continuous stream electrostatic ink jet printing.
U.S. Pat. No. 3,596,275 by Sweet also discloses a process of a continuous ink jet printing including the step wherein the ink jet stream is modulated by a high frequency electro-static field so as to cause drop separation. This technique is still utilized by several manufacturers including Elmjet and Scitex (see also U.S. Pat. No. 3,373,437 by Sweet et al)
Piezo-electric ink jet printers are also one form of commonly utilized ink jet printing device. Piezo-electric systems are disclosed by Kyser et. al. in U.S. Pat. No. 3,946,398 (1970) which utilizes a diaphragm mode of operation, by Zolten in U.S. Pat. No. 3,683,212 (1970) which discloses a squeeze mode of operation of a piezo electric crystal, Stemme in U.S. Pat. No. 3,747,120 (1972) discloses a bend mode of piezo-electric operation, Howkins in U.S. Pat. No. 4,459,601 discloses a Piezo electric push mode actuation of the ink jet stream and Fischbeck in U.S. Pat. No. 4,584,590 which discloses a sheer mode type of piezoelectric transducer element.
Recently, thermal ink jet printing has become an extremely popular form of ink jet printing. The ink jet printing techniques include those disclosed by Endo et al in GB 2007162 (1979) and Vaught et al in U.S. Pat. No. 4,490,728. Both the aforementioned references disclosed ink jet printing techniques rely upon the activation of an electrothermal actuator which results in the creation of a bubble in a constricted space, such as a nozzle, which thereby causes the ejection of ink from an aperture connected to the confined space onto a relevant print media. Printing devices utilizing the electrothermal actuator are manufactured by manufacturers such as Canon and Hewlett Packard.
As can be seen from the foregoing, many different types of printing technologies are available. Ideally, a printing technology should have a number of desirable attributes. These include inexpensive construction and operation, high speed operation, safe and continuous long term operation etc. Each technology may have its own advantages and disadvantages in the areas of cost, speed, quality, reliability, power usage, simplicity of construction operation, durability and consumables.
Recently, the present applicant has disclosed for example, an Australian Provisional Patent No. PP6534 entitled “Micromechanical Device and Method (IJ46a)”, filed Oct. 16, 1998 a new form of ink jet printer containing an ink ejection mechanism that includes a thermal bend actuator actuated in an external ambient environment which is interconnected with a paddle mechanism utilised for the ejection of ink.
Unfortunately, in the aforementioned ink jet printing arrangement as in most ink jet printing arrangements, there is a tendency of the ink ejection nozzles to dry out over time which can result in the build up of encrustaceans etc. Further, there is also the propensity of such devices to become clogged by other means such as foreign bodies in the ink or paper fibres, material etc. around the ink ejection nozzle.
Further, in the aforementioned arrangement, there is a significant gap left in one wall of the ink ejection chamber, the gap being required and utilized by the movement of the thermal actuator up and down during an ejection cycle. Unfortunately, the provision of the slot may cause ink flow to wick out of the nozzle chamber and along the thermal actuator which can cause problems with ink loss due to wicking. Such ink loss is generally undesirable.
SUMMARY OF THE INVENTION
There is disclosed herein an inkjet printhead having a plurality of nozzle devices each comprising:
an ink chamber having an ink ejection aperture,
a paddle situated within the chamber,
an actuator connected to the paddle so as to move the paddle toward the aperture,
a projection extending from the paddle and configured to extend through the aperture when the paddle is moved by the actuator toward the aperture to eject a drop of ink from the chamber through the aperture.
Preferably the ink chamber of each nozzle device is supplied with ink via at least one conduit in an underlying substrate.
Preferably the projection is an elongate poker member, a free end of which is positioned to protrude at least into the aperture when the paddle is moved by the actuator toward the aperture to eject a drop of ink from the chamber.
Preferably the projection of each nozzle device is located concentrically with the aperture.
Preferably the aperture is formed by MEMS process in which a series of layers are deposited and etched and the projection comprises a hollow cylindrical column.
Preferably the hollow cylindrical column includes a proximal end at the paddle and a distal end adjacent the aperture, said distal end being chemically mechanically planarized during formation of the aperture.
Preferably the actuator is a thermal bend actuator conductively heated so as to cause movement of said paddle.
Preferably the projection is located substantially centrally on the paddle.
There is further disclosed herein an inkjet printhead having a plurality of nozzle devices, each including an ink chamber having an ink ejection aperture, a paddle situated within the chamber and an actuator connected to the paddle so as to move the paddle toward the aperture, a method of improving operational characteristics of the printhead comprising the step of:
locating a projection on the paddle configured to extend through the aperture when the paddle is moved by the actuator toward the aperture to eject a drop of ink from the chamber through the aperture.


REFERENCES:
patent: 6027205 (2000-02-01), Herbert
patent: 6299289 (2001-10-01), Silverbook

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Inkjet printhead with nozzle pokers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Inkjet printhead with nozzle pokers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inkjet printhead with nozzle pokers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2950326

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.