Organic compounds -- part of the class 532-570 series – Organic compounds – Oxygen containing
Reexamination Certificate
1999-01-28
2002-11-12
Keys, Rosalynd (Department: 1621)
Organic compounds -- part of the class 532-570 series
Organic compounds
Oxygen containing
C568S628000
Reexamination Certificate
active
06479709
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a process for the production of a styrene derivative. More particularly, the present invention relates to a process for the production of a styrene derivative which comprises reacting a Grignard reagent prepared from an aromatic halogen compound with a vinyl halide in the presence of a catalyst.
BACKGROUND OF THE INVENTION
A styrene derivative towards which the present invention is directed is very useful as a raw material of functional high molecular compounds, medicines, agricultural chemicals, etc. For example, para-tertiary butoxystyrene (hereinafter referred to as “PTBS”) is known to be extremely useful as a raw material of a resist for use in super LSI'S, etc. (JP-A-59-199705 (The term “JP-A” as used herein means an “unexamined published Japanese patent application”), JP-A-3-277608). Further, meta-tertiary butoxystyrene (hereinafter referred to as “MTBS”) is known to be useful as an intermediate raw material of functional high molecular compounds, medicines, agricultural chemicals, etc. (JP-A-2-160739).
Two processes for the production of a styrene derivative such as PTBS and MTBS have been heretofore known.
U.S. Pat. No. 4,603,101 and JP-A-59-199705 disclose a process involving the reaction of a Grignard reagent prepared from halostyrene with perbenzoic acid tertiary butyl ester. However, this production process gives a low reaction yield. In addition, this production process is disadvantageous in that it requires the use of a perbenzoic acid tertiary butyl ester, which is difficult to be available in a large amount and is explosive. Thus, this production process leaves something to be desired in mass production of a styrene derivative such as PTBS and MTBS.
On the other hand, JP-B-4-71896 (The term “JP-A” as used herein means an “unexamined published Japanese patent application”) and JP-A-2-160739 disclose a process involving the reaction of a Grignard reagent prepared from a tertiary butoxyphenyl halide with a vinyl halide in the presence of a nickel-phosphine complex catalyst. However, this production process is disadvantageous in that it requires the use of a nickel-phosphine complex catalyst which is expensive and very toxic, although providing some improvement in reaction yield. The above cited patent applications describe that bidentate phosphine complexes such as dichloro[1, 2-bis (diphenylphosphino)ethane]nickel and dichloro[1, 3-bis (diphenylphosphino)propane]nickel are effective for the progress of this reaction in a high yield. However, these catalysts are expensive and very toxic. Accordingly, even if this production process is used, it is difficult to produce a styrene derivative such as PTBS and MTBS economically and safely. Thus, this production process, too, leaves something to be desired in mass production of a styrene derivative such as PTBS and MTBS.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a process for the production of a styrene derivative giving improvements over the prior art. More particularly, the object of the present invention is to provide a process for the production of a styrene derivative such as PTBS and MTBS which gives solution to the prior art problems and hence provides excellent economy and safety.
The above object of the present invention will become more apparent from the following detailed description and examples.
The inventors made extensive studies of solution to the prior art problems. As a result, it was found that the use of a specific catalyst in a process for the production of a styrene derivative such as PTBS and MTBS involving the reaction of a Grignard reagent prepared from tertiary butoxyphenyl halide with a vinyl halide in the presence of a catalyst makes it possible to produce such a styrene derivative economically and safely on an industrial basis. It was further confirmed that this catalytic process is effective also for the production of various styrene derivatives. Thus, the present invention has been worked out.
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be further described with reference to the production of PTBS.
The Grignard reagent to be used in the production process of the present invention is not specifically limited so far as it is prepared from an aromatic halogen compound. Thus, the Grignard reagent of the present invention can be easily prepared by any ordinary method. In other words, the Grignard reagent of the present invention can be easily prepared, e.g., by a process which comprises the reaction of metallic magnesium with para-tertiary butoxyphenyl halide in a solvent. If activated metallic magnesium is used in this preparation process, particularly good results can be given. Examples of effective methods for activating metallic magnesium include a method involving heating of a suspension of metallic magnesium in a solvent with stirring and a method involving stirring of such a suspension mixed with a slight amount of iodine, iodide such as methyl iodide, bromide such as dibromoethane or the like.
In accordance with the production process of the present invention, the reaction of a Grignard reagent prepared by the above method with a vinyl halide in the presence of one or more catalysts selected from the group consisting of manganese catalyst, iron catalyst, cobalt catalyst and rhodium catalyst makes it possible to produce PTBS safely in a high yield at a low cost.
Examples of the vinyl halide used in the production process of the present invention include vinyl fluoride, vinyl chloride, vinyl bromide, and vinyl iodide. These vinyl halides may be used singly or in admixture. In general, vinyl chloride gas and/or vinyl bromide gas are selected taking into account the economy and availability.
The catalyst used herein comprises one or more catalysts selected from the group consisting of manganese catalyst, iron catalyst, cobalt catalyst and rhodium catalyst.
The term “manganese catalyst” as used herein means to indicate a catalyst comprising manganese element as an effective component. Thus, the manganese catalyst used herein is not specifically limited. In practice, however, manganese powder, manganese compounds such as manganese chloride (II), manganese bromide (II), manganese iodide (II), manganese fluoride (II), manganese acetate (II), manganese acetate (III), manganese formate (II), manganese oxalate (II), manganese benzoate (II), manganese stearate (II), manganese borate (II), manganese acetylacetonate (II), manganese acetylacetonate (III), manganese carbonate (II), manganese sulfate (II), manganese nitrate (II) and manganese phosphate (II), hydrates thereof, various complex catalysts derived from these compounds, etc. may be used.
The term “iron catalyst” as used herein means to indicate a catalyst comprising iron element as an effective component. Thus, the iron catalyst used herein is not specifically limited. In practice, however, ferrous halide, ferric halide, catalyst prepared from ferrous halide, catalyst prepared from ferric halide, etc. may be used.
The term “catalyst prepared from ferrous halide” as used herein means to indicate a catalyst derived from ferrous halide or a catalyst comprising ferrous halide as an effective component. Examples of such a catalyst include hydrates and various complex catalysts of ferrous halide.
The term “catalyst prepared from ferric halide” as used herein can be similarly defined. Examples of such a catalyst include hydrates and various complex catalysts of ferric halide.
Specific examples of the iron catalyst used in the production process of the present invention include iron powder, iron compounds such as ferrous chloride (II), ferric chloride (III), ferrous bromide (II), ferric bromide (III), ferrous iodide (II), ferrous fluoride (II), ferric fluoride (III), ferrous acetate (II), ferrous oxalate (II), ferric oxalate (III), ferric citrate (III), ferric perchlorate (III), ferric acetylacetonate (III), ferric nitrate (III), ferric phosphate (III), ferrous sulfate (II) and ferrous sulfate (II), hydrat
Eguchi Hisao
Ishikawa Shin-ichi
Keys Rosalynd
Tosoh Corporation
LandOfFree
Process for the production of styrene derivative does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for the production of styrene derivative, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the production of styrene derivative will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2948117