Process for producing paroxetine

Organic compounds -- part of the class 532-570 series – Organic compounds – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C546S282700, C514S320000, C514S338000

Reexamination Certificate

active

06433179

ABSTRACT:

The present invention relates to a process for producing paroxetine, which has an inhibitory action on 5-hydroxytryptamine (5-HT) and is useful as a therapeutic agent for various disease such as depression and Parkinson's disease.
Paroxetine is (3S, 4R)-3-[5-(1,3-dioxaindanyl)oxymethyl]-4-(p-fluorophenyl)piperidine represented by the after-mentioned formula (4).
As processes for producing paroxetine, the process of Christensen et al. (U.S. Pat. No. 4,007,196) and the process of Barnes et al. (Japanese Examined Patent Publication JP-B-6-47587) have been known. The former comprises reacting a N-methylpiperidine derivative represented by the after-mentioned general formula (1) (wherein R
1
is a methyl group) with phenyl chloroformate and hydrolyzing the resulting phenyl carbamate under alkaline conditions. The phenyl carbamate is different from compounds represented by the after-mentioned formula (3) only in that R
2
is a phenyl group. This process has drawbacks attributed to the low degree of conversion into the phenyl carbamate, that extra time and labor are required to separate the starting materials from the product, and that the ultimate yield by the process is low.
The latter process comprises converting a N-methylpiperidine derivative represented by the general formula (1) to a 1-chloroethyl carbamate represented by the following formula (5) and then hydrolyzing the 1-chloroethyl carbamate under acidic conditions. This process requires heating or stirring for a long time under acidic conditions, which may cause decomposition of the acetal moiety of the product. Prevention of contamination of an end product by the decomposition by-product requires much labor and cost which are greatly disadvantageous to production of medicines.
In order to solve the problems with the above-mentioned processes, the present invention provides: a process for producing paroxetine represented by the following formula (4), which comprises reacting an N-alkylpiperidine represented by the following general formula (1) with a haloformic acid ester represented by the general formula (3) to prepare an alkoxycarbonylpiperidine represented by the general formula (3), and hydrolyzing the alkoxycarbonylpiperidine under alkaline conditions:
wherein each of R
1
and R
2
is a lower alkyl group, a lower cycloalkyl group, an aralkyl group or C
m
F
2m+1
(wherein m is an integer of from 1 to 6), and X is a halogen atom.
Hereinabove and hereinafter, “lower” for an organic group means from 1 to 6 carbon atoms. Suitable examples of a “lower alkyl group” include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, a hexyl group and the like. A “lower cycloalkyl group” means a cycloalkyl group having from 3 to 6 carbon atoms on its ring, and its suitable examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group and a cyclohexyl group.
An “aralkyl group” means an alkyl group substituted with an aryl group. An “aryl group”, means a monovalent aromatic hydrocarbon group or a monovalent heterocyclic group and is preferably a phenyl group or its derivative or an oxygen-, nitrogen- or sulfur-containing 5- or 6-membered ring or a condensed heterocyclic ring derived therefrom. Suitable examples of an aryl group include a phenyl group, a tolyl group, a p-halphenyl group, a thiophenyl group, a pyrrolyl group, an imidazolyl group, a pyridyl group and an indolyl group. The alkyl moiety of an aralkyl group preferably has a carbon number of 4 or less. Suitable examples of an aralkyl group are a benzyl group, a benzhydryl group, a trityl group and a phenethyl group.
A “halogen atom” means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom. C
m
F
2m+1
means a perfluoroalkyl group, and m is preferably 1 or 2.
An N-alkylpiperidine represented by the general formula (1) as the starting material for the process of the present invention is obtainable by the process disclosed in U.S. Pat. No. 4,007,197. A haloformic acid ester represented by the general formula (2) is readily commercially available and also can be synthesized by known methods.
In order to carry out the process of the present invention, firstly, an N-alkylpiperidine represented by the general formula (1) [hereinafter referred to as a compound (1)] together with a haloformic acid esters represented by the general formula (2) [hereinafter referred to as a compound (2)] is stirred in an appropriate solvent in the presence or absence of an appropriate base at an appropriate temperature to prepare an alkoxycarbonylpiperidine represented by the general formula (3) [hereinafter referred to as a compound (3)].
The N-alkyl group moiety (R
1
) of the compound (1) used here is preferably a lower alkyl group, more preferably a methyl group. The halogen atom (X) of the compound (2) used here is preferably a chlorine atom or a bromine atom, and particularly preferred is a chlorine atom. The alkyl moiety (R
2
) of the compound (2) is preferably a lower alkyl group, more preferably a methyl group or an ethyl group.
The reaction temperature is preferably from 10 to 150° C., more preferably from 20 to 120° C. The amount of a compound (2) is preferably at least equivalent to, more preferably 1 to 10 times as many equivalents as the amount of the compound (1). The reaction is preferably carried out in the presence of a base so as to proceed satisfactorily.
Any aprotic solvents except for amines may be used in the above reaction, and when a base is present, a solvent resistant to the base is preferred. Suitable examples of the solvent are dichloromethane, chloroform, diethyl ether, t-butyl methyl ether, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, benzene, toluene, xylene, hexane, heptane, petroleum ether, methyl acetate, ethyl acetate, N,N-dimethylformamide and N,N-dimethylacetamide. Among them, aromatic solvents such as toluene and ethereal solvents such as tetrahydrofuran are particularly preferred.
The base used for this reaction maybe an organic amine, an alkoxide, an alkali metal hydroxide, an alkaline earth metal hydroxide, an alkali metal hydride, an alkaline earth metal hydride or a carbonic acid salt. Suitable examples of the base are 1,8-bis(N,N-dimethylamino)naphthalene, sodium methoxide, sodium ethoxide, sodium phenoxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, sodium hydride, potassium hydride, calcium hydride, sodium carbonate, potassium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, calcium carbonate and basic alumina. Metal hydrides are particularly preferred. The amount of the base is preferably at least equivalent to the amount of the haloformic acid ester used.
The finished reaction mixture is, concentrated, after filtration if the system contains any solid, to yield a compound (3).
Then, the compound (3) thus obtained is hydrolyzed in an appropriate solvent under alkaline conditions to yield paroxetine. The reaction temperature is preferably from 10 to 150° C., more preferably from 20 to 120° C.
In the hydrolysis, any solvent resistant to the hydrolytic conditions may be used. Suitable examples of the solvent are diethyl ether, t-butyl methyl ether, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, benzene, toluene, xylene, hexane, heptane, petroleum ether, methanol, ethanol, isopropanol, t-butanol, methyl cellosolve, ethyl cellosolve, water and mixtures of at least two of them.
The alkali which provides the alkaline conditions for the hydrolysis may be an alkoxide, an alkali metal hydroxide, an alkaline earth metal hydroxide or a carbonic acid salt. Suitable examples of the alkali are sodium methoxide, sodium ethoxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogencarbonate and calcium carbonate. Among them, metal hydroxides such as alkali metal hydroxides and alkaline earth metal hydroxides are particularly preferred. The alkali may be used in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for producing paroxetine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for producing paroxetine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for producing paroxetine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2946353

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.