Supporting media by bending same

Sheet feeding or delivering – Delivering – To receiver for pack of sheets

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06478296

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to sheet handling apparatus for image forming devices. More particularly, the present invention pertains to a sheet handling apparatus operable to bend media along a transverse axis to enable support of the media substantially only along transverse edges thereof.
BACKGROUND OF THE INVENTION
It is generally known to stack sheets of media in an apparatus configured to receive sheets upon their exit from an image forming device, e.g., printer, photocopier, facsimile machine, etc. The apparatus is typically operable to perform a plurality of post processing operations on the media sheets. For example, the apparatus may stack, collate, align, group, etc., the sheets following their exit from the image forming device. In addition, the apparatus may also operate to substantially align the edges of the media sheets for binding the sheets together, e.g., staple, fasten, etc. A mechanism for binding the media sheets is often located adjacent to the apparatus to bind the media sheets together. For example, conventional printers oftentimes include a stapler movable from an idle position to a plurality of positions along the sheets for binding the media sheets. In one respect, after a number of media sheets, e.g., a set of sheets, are positioned within the apparatus, the stapler typically moves to a position to apply a staple through the sheets. The stapler then returns to the idle position to enable the media sheets to either be dropped into a storage bin or moved to another area in which the media sheets may be stored.
It is also generally known that media sheets traditionally utilized in image forming devices, e.g., non-reinforced sheets of paper, typically lack rigidity, e.g., media sheets typically lack beam strength. Thus, it is relatively impossible to support traditional types of media sheets solely by their edges because they tend to bend along an axial direction thereof. Consequently, in order to support traditional forms of media sheets, conventional apparatus typically support an entire surface of the media sheets or relatively large portions thereof.
The lack of beam strength in traditional forms of media sheets often causes the methods conventional image forming devices employ to move the media sheets to a storage bin to suffer from a variety of drawbacks and disadvantages. According to one method, a bin is positioned directly beneath a stacker mechanism. In this configuration, the stacker mechanism typically includes a pair of legs for supporting the media sheets along a relatively large portion of a bottom surface of the sheets. The legs are typically movable apart from one another to enable the media sheets to fall down between the legs and into the bin. One problem associated with this method is that the stack dropping may be inconsistent. For example, because the legs are relatively wide and therefore must travel a substantially large distance to enable the media sheets to fall between the legs, it is possible for the media sheets to become skewed due to the friction force between the legs and the media sheets. In addition, because of the relatively large number of moving parts required to cause the media sheets to fall, those devices that implement this type of method are often complex.
According to another known method, a bin is positioned at some distance from the stacker mechanism. In this method, a plurality of rollers are positioned adjacent to or beneath the stacker and generally operate to transport the media sheets from the stacker mechanism to the bin. One problem associated with this method is that there are a relatively large number of moving parts, rendering the devices that employ this method complex. In addition, by virtue of the amount of space required to separately maintain the stacker mechanism, the rollers, and the bin, devices that employ this method often require a relatively large amount of space. Another drawback to these types of devices is that it is often impractical to include all of the above-described components inside of an image forming device.
SUMMARY OF THE INVENTION
According to one aspect, the present invention pertains to a method for handling media sheets. In the method, at least one media sheet having two transversely extending edges and two axially extending edges surrounding a middle portion is received. The at least one media sheet is enabled to bend along a transverse direction during said receiving step. The at least one media sheet is supported by substantially maintaining the bend, whereby the bend operates to increase the beam strength of the at least one media sheet and thereby substantially prevent the at least one media sheet from bending along an axially extending direction.
In accordance with another aspect, the present invention relates to an apparatus for receiving at least one media sheet. The apparatus includes two side support members spaced a distance apart from each other. The side support members are configured to support respective edges of the at least one media sheet. In addition, the side support members have a first section angled with respect to a second section to thereby enable the at least one media sheet to bend along a transverse direction thereof. In this respect, the side support members are configured to support the at least one media sheet substantially only along its edges.
According to yet another aspect, the present invention pertains to a device for forming an image on at least one media sheet. The device comprises an image forming section for forming an image on the at least one media sheet and an output section located substantially downstream of the image forming section. The at least one media sheet may be transported from the image forming section to the output section. The device also includes an apparatus for receiving the at least one media sheet located substantially downstream of the output section. The apparatus includes two side support members spaced a distance apart from each other. The side support members are configured to support respective edges of the at least one media sheet. In addition, the side support members have a first section angled with respect to a second section to thereby enable the at least one media sheet to bend along a transverse direction thereof. In this respect, side support members are configured to support the plurality of media sheets substantially only along their respective edges.
In comparison to known post processing mechanisms, certain embodiments of the invention are capable of achieving certain aspects, including some or all of the following: (1) an apparatus that comprises relatively few components; (2) an apparatus that improves media sheet drop consistency; (3) an apparatus that allows finishing operations with no motion or reduced axis of motion on the finishing device; and (4) an apparatus that does not require a relatively large amount of space. Those skilled in the art will appreciate these and other advantages and benefits of various embodiments of the invention upon reading the following detailed description of a preferred embodiment with reference to the below-listed drawings.


REFERENCES:
patent: 5046717 (1991-09-01), Ettischer et al.
patent: 5478062 (1995-12-01), Horiuchi et al.
patent: 5810348 (1998-09-01), Scheufler
patent: 6302606 (2001-10-01), Hayakawa et al.
patent: 6398213 (2002-06-01), Wurschum et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Supporting media by bending same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Supporting media by bending same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Supporting media by bending same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2944281

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.