Surgery – Diagnostic testing – Cardiovascular
Reexamination Certificate
2000-12-21
2002-10-29
Getzow, Scott M. (Department: 3762)
Surgery
Diagnostic testing
Cardiovascular
Reexamination Certificate
active
06473638
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally relates to graphical user interface (GUI) displayable on a medical device or instrument such as a programmer to provide a visual/animated display of patient organs including pictorial representation of implanted medical devices (IMDs) in a patient. Specifically, the invention relates to a communication means with the IMDs in a patient on a real time basis to evaluate, monitor and dispense therapy and clinical care as needed. Preferably, an interface medical instrument such as a programmer is used to display information relating to the IMDs including operating parameters and status. The system further enables remote transfer of information and communication between instruments at the patient's station or home and caregivers at different locations. using web-enabled network systems such as the Internet.
BACKGROUND OF THE INVENTION
The present invention is compatible and complementary with the elements disclosed in the following pending applications: “Medical System Having Improved Telemetry,” filed Jul. 19, 1999, Ser. No. 09/356,340; “System and Method for Transferring Information Relating to an Implantable Medical Device to a Remote Location,” filed on Jul. 21, 1999, Ser. No. 09/358,081; “Apparatus and Method for Remote Troubleshooting, Maintenance and Upgrade of Implantable Device Systems,” filed on Oct. 26, 1999, Ser. No. 09/426,741; “Tactile Feedback for Indicating Validity of Communication Link with an Implantable Medical Device,” filed Oct. 29, 1999, Ser. No. 09/430,708; “Apparatus and Method for Automated Invoicing of Medical Device Systems,” filed Oct. 29, 1999, Ser. No. 09/429; “Apparatus and Method for Remote Self-Identification of Components in Medical Device Systems,” filed Oct. 29, 1 999, Ser. No. 09/429,956; “Apparatus and Method to Automate Remote Software Updates of Medical Device Systems,” filed Oct. 29, 1999, Ser. No. 09/429,960; “Method and Apparatus to Secure Data Transfer From Medical Device Systems,” filed Nov. 2, 1999, Ser. No. 09/431,881 “Implantable Medical Device Programming Apparatus Having An Auxiliary Component Storage Compartment,” filed Nov. 4, 1999, Ser. No. 09/433,477; “Remote Delivery Of SoftwareBased Training For Implantable Medical Device Systems,” filed Nov. 10, 1999, Ser. No. 09/437,615; “Apparatus and Method for Remote Therapy and Diagnosis in Medical Devices Via Interface Systems,” filed Dec. 14, 1999, Ser. No. 09/460,580; “Virtual Remote Monitor, Alert, Diagnostics and Programming For Implantable Medical Device Systems” filed Dec. 17, 1999, Ser. No. 09/466,284; “Instrumentation and Software for Remote Monitoring and Programming of Implantable Medical Devices (IMDs), filed Dec. 21, 1999, Ser. No. 60/172,937; “Application Proxy For Telecommunication-enabled Remote Medical Access Instruments,” filed Dec. 23, 1999, Ser. No. 60/173,081; “Information Network Scheme For Interrogation Of Implantable Medical Devices (IMDs),” filed Dec. 24, 1999, Ser. No. 60/173,064; “Medical Device GUI For Cardiac Electrophysiology Display And Data Communications,” filed Dec. 24, 1999, Ser. No. 60/173,065; “Integrated Software System For Implantable Medical Device Installation And Management,” filed Dec. 24, 1999, Ser. No. 60/173,082; “Dynamic Bandwidth Monitor And Adjuster For Remote Communications With A Medical Device,” filed Dec. 24, 1999, Ser. No. 60/173,083 “Large-Scale Processing Loop For Implantable Medical Devices (IMDs),” filed Dec. 24, 1999, Ser. No. 60/173,079; “Chronic Real-Time Information Management Systems For Implantable Medical Devices (IMDs),” filed Dec. 24, 1999, Ser. No. 60/173,062; “Automatic Voice and Data Recognition For Medical Device Instrument Systems,” filed Dec. 24, 1999, Ser. No. 60/173,071 “Central Switchboard to Facilitate Remote Collaboration With Medical Instruments,” filed Dec. 24, 1999, Ser. No. 60/173,080; which are all incorporated by reference herein in their entireties.
A technology based health care system that fully integrates the technical and social aspects of patient care and therapy should be able to flawlessly connect the client with care providers, irrespective of separation distance or location of the participants. While clinicians will continue to treat patients in accordance with accepted modern medical practice, development in communications technology are making it evermore possible to provide medical services in a time and place in an independent manner.
Prior art methods of clinical services are generally limited to in-hospital operations. For example, if a physician needs to review the performance parameters of an implantable medical device in a patient, it is likely that the patient has to go to the clinic. Further, if the medical conditions of a patient with an implantable medical device warrant a continuous monitoring or adjustment of the device, the patient would have to stay in a hospital indefinitely. Such a continued treatment plan poses both economic and social problems. Under the exemplary scenario, as a segment of the population with implanted medical devices increases, many more hospitals/clinics, including service personnel, will be needed to provide in-hospital service for the patients, thus escalating the cost of health care. Additionally, the patients will be restricted and inconvenienced by the need to either stay in the hospital or make very frequent visits to a clinic.
Yet another condition of the prior art practice requires that a patient visit a clinic center for occasional retrieval of data from the implanted medical device to assist the operation of the device and gather patient history for both clinical and research purposes. Such data is acquired by having the patient in a hospital/clinic to upload the stored data from the implantable medical device. Depending on the frequency of data collection, this procedure may pose serious difficulty and inconvenience for patients who live in rural areas or have limited mobility. Similarly, in the event a need arises to upgrade the software of an implantable medical device, the patient will be required to come into the clinic or hospital to have the upgrade installed. Further, in medical practice, it is an industry-wide standard to keep an accurate record of past and contemporaneous procedures relating to an implantable medical device uplink with, for example, a programmer. It is required that the report contain identification of all the medical devices and instruments involved in any interactive procedure. Specifically, all peripheral and major devices and instruments that are used in downlinking to the IMD, need to be reported.
IMDs, medical instruments, programmers and related medical devices are distributed throughout the world. Further, the number of people with implanted medical devices has been increasing steadily over the last few years. Thus, it is desireable to have a high efficiency communication system that would provide display and data communications with medical devices. A further limitation of the prior art relates to the management of multiple implanted medical devices in a single patient. Advances in modern therapy and treatment have made it possible to implant a number of devices in a patient. For example, IMDs such as a defibrillator or a pacer, a neural implant, a drug pump, a physiology monitor, and various other IMDs may be implanted in a single patient. To successfully manage the operations and assist the performance of each device in a patient with multi implants requires continuous updates and monitoring of the devices. Further, it may be preferred to have an operable communication between the various implants to provide a coordinated clinical therapy to the patient. Thus, there is a need to monitor the IMDs, including the programmer and instruments, on a regular if not continuous basis, to ensure optimal patient care. In the absence of other alternatives, this imposes a great burden on the patient if a hospital or clinic is the only center where the necessary follow-up and data communications could be made to enable upgrade evaluation and digestment of the IMDs
Getzow Scott M.
Girma Wolde-Michael
Medtronic Inc.
LandOfFree
Medical device GUI for cardiac electrophysiology display and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Medical device GUI for cardiac electrophysiology display and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Medical device GUI for cardiac electrophysiology display and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2940033