Pneumatic tire with colored thermoplastic elastomer layer...

Resilient tires and wheels – Tires – resilient – Pneumatic tire or inner tube

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C152S524000, C152S525000, C152SDIG001, C156S116000

Reexamination Certificate

active

06397912

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a pneumatic tire which uses a thermoplastic elastomer composition excellent in flexibility and superior in gas permeation preventive property due to enabling an elastomer component to be used as a discontinuous phase and a thermoplastic resin component to be used as a continuous phase and enabling achievement of a high ratio of the elastomer component and which enables a gas permeation preventive layer such as the inner liner of a pneumatic tire to be made thinner to lighten the weight without impairing the air retention in the tire and to a low permeability thermoplastic elastomer composition used for the same.
The present invention further relates to a pneumatic tire having a gas permeation preventive layer comprising a thermoplastic elastomer resin composition comprising a rubber/matrix resin/gas barrier resin which, in addition to flexibility, vastly enhances the gas barrier property by controlling the morphology of the low permeability thermoplastic resin composition (gas barrier resin) layer, whereby the air (gas) permeation preventive layer of the pneumatic tire can be made thinner and can contribute to a reduction of the weight.
The present invention further relates to a pneumatic tire using an adhesive thermoplastic elastomer composition comprising a thermoplastic resin component as its continuous phase and an elastomer component as its dispersed face wherein an at least partially cross-linkable thermoplastic composition imparts the inherent rubber elasticity function and further the adhesiveness.
The present invention further relates to a rubber-thermoplastic elastomer laminate which enables an inner liner of a pneumatic tire or other gas (air) permeation preventive layer to be made thinner and thereby lighten the weight of a tire, more particularly relates to a rubber and thermoplastic elastomer laminate which enhances the adhesion strength at the interface of the thermoplastic elastomer and the rubber composition in the rubber and thermoplastic elastomer laminate structure, is excellent in resistance to heat degradation at the time of forming the laminate, and is superior in durability against flexing due to long term vibration after forming and to a pneumatic tire using the same.
The present invention further relates to a pneumatic tire wherein a resin film layer colored white or another color is arranged at an innermost surface or outermost surface of the tire and that coloring is used to indicate various information.
BACKGROUND ART
Reduction of the rate of fuel consumption is one of the biggest technical themes in automobiles. As part of this, there have been increasingly strong demands made for the reduction of the weight of the pneumatic tires.
The inner surface of a pneumatic tire is, however, provided with an inner liner layer comprising a low gas permeation rubber such as a butyl rubber or a halogenated butyl rubber so as to maintain a constant tire air pressure. A halogenated butyl rubber, however, has a large hysteresis loss, so when rippling occurs in the inner surface rubber of the carcass layer and the inner liner layer at the intervals between carcass cords after vulcanization of the tire, the inner liner rubber layer will deform along with the deformation of the carcass layer, and therefore, there will be the problem of an increase of the rolling resistance. Accordingly, in general, a rubber sheet called a tie rubber with a small hysteresis loss is interposed between the inner liner layer (halogenated butyl rubber) and inner surface rubber of the carcass layer to adhere the two. Therefore, in addition to the thickness of the inner liner layer of the halogenated butyl rubber, the thickness of the tie rubber is added and the thickness of the layers as a whole exceeds 1 mm (1000 &mgr;m) which in the end becomes a reason increasing the weight of the product.
Techniques have been proposed for using various materials instead of a low gas permeation rubber such as a butyl rubber as the inner liner layer of the pneumatic tire. For example, Japanese Examined Patent Publication (Kokoku) No. 47-31761 discloses coating the inner surface of a vulcanized tire with a solution or dispersion of synthetic resins such as polyvinylidene chloride, saturated polyester resin, polyamide resin having an air permeation coefficient (cm
3
(standard state)/cm·sec·mmHg) of not more than 10×10
−13
at 30° C. and not more than 50×10
−13
at 70° C., at a thickness of 0.1 mm or less.
The technique disclosed in Japanese Examined Patent Publication (Kokoku) No. 47-31761, however, describes to provide on the inner circumferential surface of the carcass or the inner circumferential surface of the inner liner of the vulcanized tire a covering layer of a synthetic resin having a specific air permeation coefficient and to keep the thickness of the synthetic resin covering layer to 0.1 mm or less, but the pneumatic tire described in this publication has problems in the adhesiveness of the rubber and synthetic resin. Further, there is the defect that the inner liner layer is inferior in moisture resistance (or water resistance).
Japanese Unexamined Patent Publication (Kokai) No. 5-330307 discloses to halogenate the inner surface of the tire (using the conventionally known chlorination solution, bromine solution, or iodine solution) and then form over that a polymer film (thickness of 10 to 200 &mgr;m) of methoxymethylated nylon, copolymerized nylon, a blend of polyurethane and polyvinylidene chloride, or a blend of polyurethane and polyvinylidene fluoride.
Further, Japanese Unexamined Patent Publication (Kokai) No. 5-318618 discloses a pneumatic tire having a thin film of methoxymethylated nylon as an inner liner. According to this technique, the inner surface of the green tire is sprayed or coated with a solution or emulsion of methoxymethylated nylon and the tire then vulcanized or the inner surface of the tire after vulcanization is sprayed or coated with a solution or emulsion of methoxymethylated nylon to produce a pneumatic tire. In the arts disclosed in these publications as well, however, in addition to the defect of the poor water resistance of the thin films, there is the defect of a difficulty in maintaining uniformity of the film thickness.
Further, Japanese Unexamined Patent Publication (Kokai) No. 6-40207 has an example of use of a multilayer film having a low air permeation layer comprising a polyvinylidene chloride film or an ethylene-vinyl alcohol copolymer film and an adhesive layer composed of a polyolefin film, an aliphatic polyamide film, or a polyurethane film as the air permeation preventive layer of the tire. In this system, however, the low air permeation layer lacks flexibility and the film cannot track expansion or contraction of the material when the tire is being run on so splits.
Further, Japanese Unexamined Patent Publication (Kokai) No. 5-508435 proposes the use, as a tire inner liner composition, of a composition comprised of a halogen-containing copolymer of C
4
to C
7
isomonoolefin and p-alkylstyrene containing carbon black, a plasticizer oil, and a vulcanization agent for the tire inner liner, but the inner liner has an insufficient air permeation coefficient and is not suitable for reducing the weight of the tire further.
That is, the material for forming the gas barrier layer used for the inner liner of a pneumatic tire etc. is required to have flexibility and a gas barrier property, but no material has yet been presented which has both of these properties.
A thermoplastic elastomer composition which is composed of a thermoplastic resin component as a continuous phase and an elastomer component as a dispersed phase and in which at least part of the elastomer component is cross-linked (vulcanized) has the rubber elasticity performance derived from the elastomer component which has generally been cross-linked in the past, and, due to the thermoplastic resin component forming the continuous phase, can be thermoplastically molded at a high temperature where it melts and becomes fluid

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pneumatic tire with colored thermoplastic elastomer layer... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pneumatic tire with colored thermoplastic elastomer layer..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pneumatic tire with colored thermoplastic elastomer layer... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2939387

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.