Poly(ether-thioether), poly(ether-sulfoxide) and...

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S022100, C536S024300, C536S025300, C536S025320, C514S001000, C514S04400A

Reexamination Certificate

active

06348583

ABSTRACT:

FIELD AND BACKGROUND OF THE INVENTION
The present invention relates, in general, to nucleotide mimetics and their derived nucleic acid mimetics, methods for the construction of both and the use of the nucleic acid mimetics in biochemistry and medicine. More particularly, the present invention relates to (i) acyclic nucleotide mimetics, also referred to as acyclic nucleotides, based upon a poly(ether-thioether), poly(ether-sulfoxide) or poly(ether-sulfone) backbone; (ii) a method for synthesizing the acyclic nucleotide mimetics; (iii) acyclic nucleotide mimetic sequences, also referred to as acyclic polynucleotide sequences; (iv) a method for synthesizing the acyclic nucleotide mimetic sequences; and (v) use of the acyclic nucleotide mimetic sequences as oligonucleotides in, for example, antisense applications and procedures.
An antisense oligonucleotide (e.g., antisense oligodeoxyribonucleotide) may bind its target nucleic acid either by Watson-Crick base pairing or Hoogsteen and anti-Hoogsteen base pairing. To this effect see, Thuong and Helene (1993) Sequence specific recognition and modification of double helical DNA by oligonucleotides Angev. Chem. Int. Ed. Engl. 32:666. According to the Watson-Crick base pairing, heterocyclic bases of the antisense oligonucleotide form hydrogen bonds with the heterocyclic bases of target single-stranded nucleic acids (RNA or single-stranded DNA), whereas according to the Hoogsteen base pairing, the heterocyclic bases of the target nucleic acid are double-stranded DNA, wherein a third strand is accommodated in the major groove of the B-form DNA duplex by Hoogsteen and anti-Hoogsteen base pairing to form a triplex structure.
According to both the Watson-Crick and the Hoogsteen base pairing models, antisense oligonucleotides have the potential to regulate gene expression and to disrupt the essential functions of the nucleic acids. Therefore, antisense oligonucleotides have possible uses in modulating a wide range of diseases.
Since the development of effective methods for chemically synthesizing oligonucleotides, these molecules have been extensively used in biochemistry and biological research and have the potential use in medicine, since carefully devised oligonucleotides can be used to control gene expression by regulating levels of transcription, transcripts and/or translation.
Oligodeoxyribonucleotides as long as 100 base pairs (bp) are routinely synthesized by solid phase methods using commercially available, fully automated synthesis machines. The chemical synthesis of oligoribonucleotides, however, is far less routine. Oligoribonucleotides are also much less stable than oligodeoxyribonucleotides, a fact which has contributed to the more prevalent use of oligodeoxyribonucleotides in medical and biological research, directed at, for example, gene therapy or the regulation of transcription or translation levels.
Gene expression involves few distinct and well-regulated steps. The first major step of gene expression involves transcription of a messenger RNA (mRNA) which is an RNA sequence complementary to the antisense (i.e., −) DNA strand, or, in other words, identical in sequence to the DNA sense (i.e., +) strand, composing the gene. In eukaryotes, transcription occurs in the cell nucleus.
The second major step of gene expression involves translation of a protein (e.g., enzymes, structural proteins, secreted proteins, gene expression factors, etc.) in which the mRNA interacts with ribosomal RNA complexes (ribosomes) and amino acid activated transfer RNAs (tRNAs) to direct the synthesis of the protein coded for by the mRNA sequence.
Initiation of transcription requires specific recognition of a promoter DNA sequence located upstream to the coding sequence of a gene by an RNA-synthesizing enzyme—RNA polymerase. This recognition is preceded by sequence-specific binding of one or more protein transcription factors to the promoter sequence. Additional proteins, which bind at or close to the promoter sequence, may upregulate transcription and are known as enhancers. Other proteins, which bind to or close to the promoter, but whose binding prohibits action of RNA polymerase, are known as repressors.
There is also evidence that in some cases gene expression is downregulated by endogenous antisense RNA repressors that bind a complementary mRNA transcript and thereby prevent its translation into a functional protein. To this effect see Green et al. (1986) The role of antisense RNA in gene regulation. Ann. Rev. Biochem. 55:569.
Thus, gene expression is typically upregulated by transcription factors and enhancers and downregulated by repressors.
However, in many disease situation gene expression is impaired. In many cases, such as different types of cancer, for various reasons the expression of a specific endogenous or exogenous (e.g., of a pathogen such as a virus) gene is upregulated. Furthermore, in infectious diseases caused by pathogens such as parasites., bacteria or viruses, the disease progression depends on expression of the pathogen genes, this phenomenon may also be considered as far as the patient is concerned as upregulation of exogenous genes.
Most conventional drugs function by interaction with and modulation of one or more targeted endogenous or exogenous proteins, e.g., enzymes. Such drugs, however, typically are not specific for targeted proteins but interact with other proteins as well. Thus, a relatively large dose of drug must be used to effectively modulate a targeted protein.
Typical daily doses of drugs are from 10
−5
-10
−1
millimoles per kilogram of body weight or 10
−3
-10 millimoles for a 100 kilogram person. If this modulation instead could be effected by interaction with and inactivation of mRNA, a dramatic reduction in the necessary amount of drug could likely be achieved, along with a corresponding reduction in side effects. Further reductions could be effected if such interaction could be rendered site-specific. Given that a functioning gene continually produces mRNA, it would thus be even more advantageous if gene transcription could be arrested in its entirety.
Given these facts, it would be advantageous if gene expression could be arrested or downmodulated at the transcription level.
The ability of chemically synthesizing oligonucleotides and analogs thereof having a selected predetermined sequence offers means for downmodulating gene expression. Three types of gene expression modulation strategies may be considered.
At the transcription level, antisense or sense oligonucleotides or analogs that bind to the genomic DNA by strand displacement or the formation of a triple helix, may prevent transcription. To this effect see, Thuong and Helene (1993) Sequence specific recognition and modification of double helical DNA by oligonucleotides Angev. Chem. Int. Ed. Engl. 32:666.
At the transcript level, antisense oligonucleotides or analogs that bind target mRNA molecules lead to the enzymatic cleavage of the hybrid by intracellular RNase H. To this effect see Dash et al. (1987) Proc. Natl. Acad. Sci. USA, 84:7896. In this case, by hybridizing to the targeted mRNA, the oligonucleotides or oligonucleotide analogs provide a duplex hybrid recognized and destroyed by the RNase H enzyme. Alternatively, such hybrid formation may lead to interference with correct splicing. To this effect see Chiang et al. (1991) Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms. J. Biol. Chem. 266:18162. As a result, in both cases, the number of the target mRNA intact transcripts ready for translation is reduced or eliminated.
At the translation level, antisense oligonucleotides or analogs that bind target mRNA molecules prevent, by steric hindrance, binding of essential translation factors (ribosomes), to the target mRNA, as described by Paterson et al. (1977) Proc. Natl. Acad. Sci. USA, 74:4370, a phenomenon known in the art as hybridization arrest, disabling the translation of such mRNAs.
Thus, antisense sequences, which as described hereinabove, may arres

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Poly(ether-thioether), poly(ether-sulfoxide) and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Poly(ether-thioether), poly(ether-sulfoxide) and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Poly(ether-thioether), poly(ether-sulfoxide) and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2937581

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.