Mass spectrometric methods for biomolecular screening

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007100, C530S350000, C536S023100, C436S501000

Reexamination Certificate

active

06428956

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed to methods for the use of mass spectrometry for the determination of the structure of a biomolecule especially a nucleic acid target, the site(s) of interaction between ligands and the target, the relative binding affinity of ligands for the target and other useful information. The present invention also provides methods for the use of mass spectrometry for screening chemical mixtures or libraries, especially combinatorial libraries, for individual compounds that bind to a selected target and can be used in pharmaceuticals, veterinary drugs, agricultural chemicals industrial chemicals and otherwise. The present invention is further directed to methods for screening multiple targets simultaneously against, e.g. a combinatorial library of compounds.
A further aspect of the invention provides methods for determining the interaction between one or a plurality of molecular species, especially “small” molecules and a molecular interaction site on a nucleic acid, especially an RNA.
BACKGROUND OF THE INVENTION
The process of drug discovery is changing at a fast pace because of the rapid progress and evolution of a number of technologies that impact this process. Drug discovery has evolved from what was, several decades ago, essentially random screening of natural products, into a scientific process that not only includes the rational and combinatorial design of large numbers of synthetic molecules as potential bioactive agents, such as ligands, agonists, antagonists, and inhibitors, but also the identification, and mechanistic and structural characterization of their biological targets, which may be polypeptides, proteins, or nucleic acids. These key areas of drug design and structural biology are of tremendous importance to the understanding and treatment of disease. However, significant hurdles need to be overcome when trying to identify or develop high affinity ligands for a particular biological target. These include the difficulty surrounding the task of elucidating the structure of targets and targets to which other molecules may be bound or associated, the large numbers of compounds that need to be screened in order to generate new leads or to optimize existing leads, the need to dissect structural similarities and dissimilarities between these large numbers of compounds, correlating structural features to activity and binding affinity, and the fact that small structural changes can lead to large effects on biological activities of compounds.
Traditionally, drug discovery and optimization have involved the expensive and time-consuming, and therefore slow, process of synthesis and evaluation of single compounds bearing incremental structural changes. When using natural products, the individual components of extracts had to be painstakingly separated into pure constituent compounds prior to biological evaluation. Further, all compounds had to be carefully analyzed and characterized prior to in vitro screening. These screens typically included evaluation of candidate compounds for binding affinity to their target, competition for the ligand binding site, or efficacy at the target as determined via inhibition, cell proliferation, activation or antagonism end points. Considering all these facets of drug design and screening that slow the process of drug discovery, a number of approaches to alleviate or remedy these matters, have been implemented by those involved in discovery efforts.
One way in which the drug discovery process is being accelerated is by the generation of large collections, libraries, or arrays of compounds. The strategy of discovery has moved from selection of drug leads from among compounds that are individually synthesized and tested to the screening of large collections of compounds. These collections may be from natural sources (Sternberg et al., Proc. Natl. Acad. Sci. USA, 1995, 92, 1609-1613) or generated by synthetic methods such as combinatorial chemistry (Ecker and Crooke, Bio/Technology, 1995, 13, 351-360 and U.S. Pat. No. 5,571,902, incorporated herein by reference). These collections of compounds may be generated as libraries of individual, well-characterized compounds synthesized, e.g. via high throughput, parallel synthesis or as a mixture or a pool of up to several hundred or even several thousand molecules synthesized by split-mix or other combinatorial methods. Screening of such combinatorial libraries has usually involved a binding assay to determine the extent of ligand-receptor interaction (Chu et al., J. Am. Chem. Soc., 1996, 118, 7827-35). Often the ligand or the target receptor is immobilized onto a surface such as a polymer bead or plate. Following detection of a binding event, the ligand is released and identified. However, solid phase screening assays can be rendered difficult by non-specific interactions.
Whether screening of combinatorial libraries is performed via solid-phase, solution methods or otherwise, it can be a challenge to identify those components of the library that bind to the target in a rapid and effective manner and which, hence, are of greatest interest. This is a process that needs to be improved to achieve ease and effectiveness in combinatorial and other drug discovery processes. Several approaches to facilitating the understanding of the structure of biopolymeric and other therapeutic targets have also been developed so as to accelerate the process of drug discovery and development. These include the sequencing of proteins and nucleic acids (Smith, in Protein Sequencing Protocols, Humana Press, Totowa, N.J., 1997; Findlay and Geisow, in Protein Sequencing: A Practical Approach, IRL Press, Oxford, 1989; Brown, in DNA Sequencing, IRL Oxford University Press, Oxford, 1994; Adams, Fields and Venter, in Automated DNA Sequencing and Analysis, Academic Press, San Diego, 1994). These also include elucidating the secondary and tertiary structures of such biopolymers via NMR (Jefson, Ann. Rep. in Med. Chem., 1988, 23, 275; Erikson and Fesik, Ann. Rep. in Med. Chem., 1992, 27, 271-289), X-ray crystallography (Erikson and Fesik, Ann. Rep. in Med. Chem., 1992, 27, 271-289) and the use of computer algorithms to attempt the prediction of protein folding (Copeland, in Methods of Protein Analysis: A Practical Guide to Laboratory Protocols, Chapman and Hall, New York, 1994; Creighton, in Protein Folding, W. H. Freeman and Co., 1992). Experiments such as ELISA (Kemeny and Challacombe, in ELISA and other Solid Phase Immunoassays: Theoretical and Practical Aspects; Wiley, New York, 1988) and radioligand binding assays (Berson and Yalow, Clin. Chim. Acta, 1968, 22, 51-60; Chard, in “An Introduction to Radioimmunoassay and Related Techniques,” Elsevier press, Amsterdam/New York, 1982), the use of surface-plasmon resonance (Karlsson, Michaelsson and Mattson, J. Immunol. Methods, 1991, 145, 229; Jonsson et al., Biotechniques, 1991, 11, 620), and scintillation proximity assays (Udenfriend, Gerber and Nelson, Anal. Biochem., 1987, 161, 494-500) are being used to understand the nature of the receptor-ligand interaction.
All of the foregoing paradigms and techniques are now available to persons of ordinary skill in the art and their understanding and mastery is assumed herein.
Likewise, advances have occurred in the chemical synthesis of compounds for high-throughput biological screening. Combinatorial chemistry, computational chemistry, and the synthesis of large collections of mixtures of compounds or of individual compounds have all facilitated the rapid synthesis of large numbers of compounds for in vitro screening. Despite these advances, the process of drug discovery and optimization entails a sequence of difficult steps. This process can also be an expensive one because of the costs involved at each stage and the need to screen large numbers of individual compounds. Moreover, the structural features of target receptors can be elusive.
One step in the identification of bioactive compounds involves the determination of binding affinity of test compounds for a desired biopolymeric or

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mass spectrometric methods for biomolecular screening does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mass spectrometric methods for biomolecular screening, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mass spectrometric methods for biomolecular screening will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2936827

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.