Multiplex communications – Communication over free space – Combining or distributing information via code word channels...
Reexamination Certificate
1998-10-09
2002-08-27
Olms, Douglas (Department: 2661)
Multiplex communications
Communication over free space
Combining or distributing information via code word channels...
C370S335000, C370S441000, C375S140000
Reexamination Certificate
active
06442153
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Technical Field of the Invention
The present invention relates generally to the mobile telecommunications field and, in particular, to a method for processing multiple random access mobile-originated calls.
2. Description of Related Art
The next generation of mobile communications systems will be required to provide a broad selection of telecommunications services including digital voice, video and data in packet and channel circuit-switched modes. As a result, the number of calls being made is expected to increase significantly, which will result in much higher traffic density on random access channels (RACHs). Unfortunately, this higher traffic density will also result in increased collisions and access failures. Consequently, the new generation of mobile communications systems will have to use much faster and flexible random access procedures, in order to increase their access success rates and reduce their access request processing times.
In most mobile communications systems, such as, for example, the European joint development referred to as the “Code Division Testbed” (CODIT), and systems operating in accordance with the IS-95 Standard (ANSI J-STD-008), a mobile station can gain access to a base station by first determining that the RACH is available for use. Then, the mobile station transmits a series of access request preambles (e.g., single 1023 chip symbols) with increasing power levels, until the base station detects the access request. In response, the base station starts the process of controlling the mobile station's transmitted power via a downlink channel. Once the initial “handshaking” between the mobile station and base station has been completed, the mobile user transmits a random access message.
In a Spread Spectrum Slot Reservation Multiple Access (SS-SRMA) System, a slotted ALOHA (S-ALOHA) random access scheme is used. At the beginning of a slot, a mobile station will send a random access packet to the base station and then await an acknowledgment from the base station that the packet was received. This S-ALOHA scheme dispenses with a number of steps that characterize the CODIT and IS-95 random access schemes (namely, power ramping and power control).
More specifically, in a CODIT-based Code Division Multiple Access (CDMA) system, a mobile station will attempt to access the base station receiver by using a “power ramping” process that increases the power level of each successive transmitted preamble symbol. As soon as an access request preamble is detected, the base station activates a closed loop power control circuit, which functions to control the mobile station's transmitted power level in order to keep the received signal power from the mobile station at a desired level. The mobile station then transmits its specific access request data. The base station's receiver “despreads” the received (spread spectrum) signals using a matched filter, and diversity-combines the despread signals to take advantage of antenna diversity.
In an IS-95 CDMA system, a similar random access technique is used. However, the primary difference between the CODIT and IS-95 process is that the IS-95 mobile station transmits a complete random access packet instead of just the preamble. If the base station does not acknowledge the access request, the IS-95 mobile station re-transmits the access request packet at a higher power level. This process continues until the base station acknowledges the access request.
In a mobile communications system using an S-ALOHA random access scheme, such as the method disclosed in the above-cited U.S. patent application Ser. No. 08/733,501 (hereinafter, “the '501 Application”), a mobile station generates and transmits a random access packet. A diagram that illustrates a frame structure for such a random access packet is shown in FIG.
1
. The random access packet (“access request data frame”) comprises a preamble and a data field portion. The preamble contains a unique signature (bit) pattern, which is “L” symbols long. The signature pattern is randomly selected from a set of patterns that are, but not necessarily, orthogonal to each other. As such, the use of this unique signature pattern feature, as described and claimed in the '501 Application, provides a significantly higher throughput efficiency than prior random access schemes.
As described in the '501 Application, the data field of the random access packet includes certain random access information, including mobile (user) identity information, required service number (number of services to be provided), required air time (time needed to complete a message), short packet data message (to increase transmission efficiency), and an error detection redundancy field (cyclic redundancy code). For reasons elaborated in the '501 Application, the spreading ratio (spread spectrum modulation) of the preamble is selected to be longer than the spreading ratio of the data field portion. However, situations may be envisioned in which this is not necessarily so.
The random access packet (e.g., such as the packet shown in
FIG. 1
) is transmitted by the mobile station at the beginning of the next available slot. A block diagram of an apparatus that can be used in a mobile station to generate and transmit the random access packet illustrated in
FIG. 1
is shown in FIG.
2
. Essentially, as illustrated by
FIG. 2
, the preamble and data field of the random access packet are generated and spread separately (with respective spreading codes) and then multiplexed and transmitted by the mobile station.
Next, the random access packet transmitted by the mobile station is received and demodulated at the target base station with a matched filter-based receiver.
FIG. 3
is a block diagram of a detection section (for one antenna) of a base station's random access receiver, which functions primarily to estimate the timing of the received signal rays. The matched filter, which is used only during the preamble period, is tuned to the preamble's spreading code. The matched filter is used to detect the presence of the random access request, and despread the preamble part of the random access packet and feed it to the accumulator unit. The accumulator (signatures 1-l) is a unique feature used for the '501 Application's random access method to sum the signals at the output of the matched filter during the preamble's (M) symbol periods, in order to increase the received signal-to-interference (S/I) power ratio. Since each received preamble comprises a unique signature pattern, the accumulation operation is carried out with a plurality of accumulators (1-l), with each accumulator tuned to one of the possible signature patterns to be received.
FIG. 4
is a simple block diagram of an accumulator that can be used for the I channel (quadrature detection) in the random access detector section shown in
FIG. 3. A
similar accumulator can be used for the Q channel. Referring to
FIGS. 3 and 4
, the output of each accumulator (signature 1-l) is coupled to a peak detection unit. At the end of the preamble period, each peak detection unit searches the output of its respective matched filter for each signal peak that exceeds a predetermined detection threshold. Each peak detection unit then registers (detects and stores) the magnitude and relative phase of each of those peak signals, and thereby determines the number of significant signal rays available for demodulation in the receiver. As such, the timing of each peak is estimated and used to set the receiver's “Rake” parameters (Rake receiver sections 1-l).
FIG. 5
is a block diagram of a random access demodulator that can be used to demodulate the data field portion of the random access packet. Essentially, the random access demodulator section decodes the data information in the received data field and checks for transmission errors.
Notably, although the random access apparatus and method described above with respect to
FIGS. 1-5
have numerous advantages over prior random access sch
Dahlman Erik
Jamal Karim
Jenkens & Gilchrist P.C.
Olms Douglas
Sam Phirin
Telefonaktiebolaget LM Ericsson (publ)
LandOfFree
Random access in a mobile telecommunications system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Random access in a mobile telecommunications system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Random access in a mobile telecommunications system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2936210