Electric heating – Metal heating – By arc
Reexamination Certificate
2000-04-11
2002-12-31
Dunn, Tom (Department: 1725)
Electric heating
Metal heating
By arc
C029S603120, C219S121660
Reexamination Certificate
active
06501048
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention is related to disc drive data storage systems and, more particularly, to a method of controlling curvature of a hydrodynamic bearing slider.
Disc drives of the “Winchester” type are well known in the industry. Such drives use rigid discs coated with a magnetizable medium for storage of digital information in a plurality of circular, concentric data tracks. The discs are mounted on a spindle motor which causes the discs to spin and the surfaces of the discs to pass under respective head gimbal assemblies (HGAs). Head gimbal assemblies carry transducers which write information to and read information from the disc surface. An actuator mechanism moves the head gimbal assemblies from track to track across the surfaces of the discs under control of electronic circuitry. The actuator mechanism includes a track accessing arm and a load beam for each head gimbal assembly. The load beam provides a preload force which urges the head gimbal assembly toward the disc surface.
The head gimbal assembly includes a hydrodynamic (e.g. air) bearing slider and a gimbal. The gimbal is positioned between the slider and the load beam to provide a resilient connection that allows the slider to pitch and roll while following the topography of the disc. The slider includes a slider body having an air bearing surface which faces the disc surface. As the disc rotates, the disc drags air under the slider along the air bearing surface in a direction approximately parallel to the tangential velocity of the disc. Skin friction on the air bearing surface causes the air pressure between the disc and the air bearing surface to increase which creates a hydrodynamic lifting force that causes the slider to lift and fly above the disc surface. The preload force supplied by the load beam counteracts the hydrodynamic lifting force. The preload force and the hydrodynamic lifting force reach an equilibrium which determines the flying height of the slider. The transducer is typically mounted at or near the trailing edge of the slider.
Flying height is viewed as one of the most critical parameters of contact and non-contact recording. As the average flying height of the slider decreases, the transducer achieves greater resolution between the individual data bit locations on the disc. Therefore, it is desirable to have the transducers fly as close to the disc as possible. Flying height is preferably uniform regardless of variable flying conditions, such as tangential velocity variation from inside to outside tracks, lateral slider movement during seek operations and air bearing skew angles.
In certain applications, it is desirable to fabricate the slider such that the bearing surface has a positive curvature along the length and width of the slider. Length curvature is known as crown curvature. Width curvature is known as camber or cross curvature. The proper setting and control of length and width curvature improves flying height variability over varying conditions, improves wear on the slider and the disc surface, and improves takeoff performance by reducing stiction between the slider and the disc surface. In a typical slider fabrication process, length or width curvature is created by lapping the bearing surface on a spherically-shaped lapping surface or on a flat lapping surface while rocking the slider body back and forth in the direction of the desired curvature. The amount of curvature is determined by the radius of the rocking rotation. This lapping process is difficult to control and results in large manufacturing tolerances. More efficient and controllable methods of effecting air bearing surface curvature are desired.
U.S. Pat. No. 5,442,850 discloses inducing a preselected amount of compressive stress within a selected section of the bearing surface by impinging the section with a plurality of particles for a preselected amount of time. U.S. Pat. No. 4,910,621 discloses a method of producing curvature in a slider by creating a groove in the leading edge of the slider, placing a sealing material in the groove and then melting and stiffening the sealing material in the groove. The sealing material has an adhesive property upon melting and a shrinking property upon stiffening which causes lengthwise curvature at the leading edge of the slider. U.S. Pat. No. 5,220,471 discloses a slider having a longitudinal linear groove formed in a surface which is opposite the disc-opposing surface. The groove creates tensile stresses which cause the disc-opposing surface of the slider to be a curved surface in a convex form.
SUMMARY OF THE INVENTION
One aspect of the present invention relates to a method of controlling curvature of a disc head slider having a slider body with a bearing surface, a back surface, which is opposite to the bearing surface, a first axis and a second axis, which is perpendicular to the first axis, is provided. The method includes directing a continuous-wave laser beam toward the back surface to form a laser spot on the back surface. The laser spot is scanned along the back surface in a direction parallel to one of the first and second axes to form a continuous elongated scan line on the back surface such that the back surface melts and then cools along the scan line to induce anisotropic tensile stress in the back surface, which is oriented predominately parallel to the scan line.
Another aspect of the present invention relates to a method of controlling curvature of a disc head slider having a slider body with a bearing surface, a back surface which is opposite to the bearing surface, and crown and cross curvature axes. The method includes scanning a continuous-wave laser beam spot along a scan line, which is parallel to one of the crown curvature and cross curvature axes to induce tensile stress in the back surface that is predominately aligned with the scan line. A positive curvature change is induced in the bearing surface, which is greater along one of the crown and cross curvature axes than the other of the crown and cross curvature axes.
Yet another aspect of the present invention relates to a disc head slider, which includes a slider body having a longitudinal axis, a transverse axis, which is perpendicular to the longitudinal axis, a bearing surface and a back surface, which is opposite to the bearing surface. Tensile stress is thermally applied in the back surface, which is predominately aligned with one of the longitudinal and transverse axes. A curvature is induced in the bearing surface by the thermally applied tensile stress, which is greater in a direction along one of the longitudinal and transverse axes than along the other of the longitudinal and transverse axes.
REFERENCES:
patent: 4910621 (1990-03-01), Matsuda et al.
patent: 5220471 (1993-06-01), Matsuzaki
patent: 5237476 (1993-08-01), Bischoff et al.
patent: 5256850 (1993-10-01), Maegawa et al.
patent: 5266769 (1993-11-01), Deshpande et al.
patent: 5303105 (1994-04-01), Jorgenson
patent: 5442850 (1995-08-01), Kerth
patent: 5982583 (1999-11-01), Strom
patent: 6073337 (2000-06-01), Strom
Photograph of TDK TPC ABS slider from Quantum Fireball 2 Drive, publicly on sale Jan. 1, 1996.
Photograph of TDK AAB slider from Pike Disc Drive, publicly on sale Jan. 31, 1996.
R.W. Stinnett and E.L. Neau “Ion Beam Surface Treatment”, QM Technologies Inc.An Interim Report, Summer 1996, pp. 1-16.
R. Ebbutt and S. Danyluk, Ilan Weisshaus, “Method to Evaluate Damage Induced by Dicing and Laser Cutting of Silicon Wafer”. no date avail.
Dunn Tom
Johnson Jonathan
Seagate Technology LLC
Westman Champlin & Kelly
LandOfFree
Slider having thermally applied tensile stress for curvature... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Slider having thermally applied tensile stress for curvature..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Slider having thermally applied tensile stress for curvature... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2934365