Chemistry: electrical current producing apparatus – product – and – Having earth feature
Reexamination Certificate
2000-10-13
2002-12-10
Ryan, Patrick (Department: 1745)
Chemistry: electrical current producing apparatus, product, and
Having earth feature
C429S047000, C429S010000, C429S218200, C429S231800, C420S900000
Reexamination Certificate
active
06492056
ABSTRACT:
FIELD OF THE INVENTION
The instant invention relates composite hydrogen storage materials including 1) hydrogen storage materials and 2) additional catalytic materials. The catalytic materials of the instant invention are based on a disordered non-equilibrium material designed to have fast kinetics, high density of catalytically active sites, resistance to poisoning, and long operating life. The instant composite material is not only useful for hydrogen storage, but is also useful as the anode materials for fuel cells and more specifically to Ovonic instant startup fuel cells.
BACKGROUND OF THE INVENTION
The instant application discloses hydrogen storage materials and fuel cells that overcome the major deterrents to the widespread utilization of such. Namely, the instant inventors have solved the major barriers present in modern hydrogen storage and fuel cell technology, using materials which contain no costly noble metals therein. These barriers include: hydrogen storage capabilities, requisite catalytic activity, ionic conductivity, corrosion resistance, and increased resistance toward the poisoning effect of different gases. Additionally these materials must be low cost, containing no noble metals, so that fuel cells can be widely utilized. The anodes that are present in the fuel cells have catalytic material and hydrogen storage material (allowing for instant startup) using active materials which contain no noble metals. The fuel cells are capable of instantaneous startup and can store recaptured energy from processes such as regenerative braking. The materials are robust and poison resistant. The electrodes are easy to produce, by proven low cost production techniques, such as those presently employed in the production of Ovonic Ni-MH batteries. Carbon is eliminated from the anode, where in the prior art it tends to be oxidized to carbon dioxide, thus helping to eliminating the carbonate poisoning of the fuel cell electrolyte. The hydrogen storage materials of the anode are dense enough to block carbon dioxide from entering the electrolyte via the hydrogen fuel stream, but allow hydrogen to pass, acting as a hydrogen pump. The instant fuel cells have increased efficiency and power availability (higher voltage and current) and a dramatic improvement in operating temperature range (from −20 to 150° C.) The fuel cell system of the instant invention allows for widespread utilization of fuel cells in all sectors of the energy production/consumption market, thereby further fostering the realization of a hydrogen based economy. An infrastructure for such a hydrogen based economy is disclosed in U.S. application Ser. No. 09/444,810, entitled “A Hydrogen-based Ecosystem” filed on Nov. 22, 1999 for Ovshinsky, et al. (the '810 application), which is hereby incorporated by reference. This infrastructure, in turn, is made possible by hydrogen storage alloys that have surmounted the chemical, physical, electronic and catalytic barriers that have heretofore been considered insoluble. These alloys are fully described in copending U.S. patent application Ser. No. 09/435,497, entitled “High Storage Capacity Alloys Enabling a Hydrogen-based Ecosystem”, filed on Nov. 6, 1999 for Ovshinsky et al. (the '497 application), which is hereby incorporated by reference.
As the world's population expands and its economy increases, the atmospheric concentrations of carbon dioxide are warming the earth causing climate change. However, the global energy system is moving steadily away from the carbon-rich fuels whose combustion produces the harmful gas. Experts say atmospheric levels of carbon dioxide may be double that of the pre-industrial era by the end of the next century, but they also say the levels would be much higher except for a trend toward lower-carbon fuels that has been going on for more than 100 years. Furthermore, fossil fuels cause pollution and are a causative factor in the strategic military struggles between nations. Furthermore, fluctuating energy costs are a source of economic instability worldwide
In the United States, it is estimated, that the trend toward lower-carbon fuels combined with greater energy efficiency has, since 1950, reduced by about half the amount of carbon spewed out for each unit of economic production. Thus, the decarbonization of the energy system is the single most important fact to emerge from the last 20 years of analysis of the system. It had been predicted that this evolution will produce a carbon-free energy system by the end of the 21
st
century. The present invention is another product which is essential to shortening that period to a matter of years. In the near term, hydrogen will be used in fuel cells for cars, trucks and industrial plants, just as it already provides power for orbiting spacecraft. But, with the problems of storage and infrastructure solved (see the '810 and '497 applications), hydrogen will also provide a general carbon-free fuel to cover all fuel needs.
A dramatic shift has now occurred, in which the problems of global warming and climate change are now acknowledged and efforts are being made to solve them. Therefore, it is very encouraging that some of the world's biggest petroleum companies now state that they want to help solve these problems. A number of American utilities vow to find ways to reduce the harm done to the atmosphere by their power plants. DuPont, the world's biggest chemicals firm, even declared that it would voluntarily reduce its emissions of greenhouse gases to 35% of their level in 1990 within a decade. The automotive industry, which is a substantial contributor to emissions of greenhouse gases and other pollutants (despite its vehicular specific reductions in emissions), has now realized that change is necessary as evidenced by their electric and hybrid vehicles.
Hydrogen is the “ultimate fuel.” In fact, it is considered to be “THE” fuel for the future. Hydrogen is the most plentiful element in the universe (over 95%). Hydrogen can provide an inexhaustible, clean source of energy for our planet which can be produced by various processes. Utilizing the inventions of subject assignee, the hydrogen can be stored and transported in solid state form in trucks, trains, boats, barges, etc. (see the '810 and '497 applications). For instance, a truck carrying 15 tons of hydride material, will contain 1050 Kg (assuming 7 wt % storage) of hydrogen, which is 412,000 standard cubic feet of hydrogen. This is enough fuel to supply 175 cars at 6 Kg/car. Assuming 1 ton of hydride occupies a volume of 1 cubic meter, and adding an additional 33% volume for cooling, the truck to carry the material will need to be about 20,000 liters in volume.
A fuel cell is an energy-conversion device that directly converts the energy of a supplied gas into an electric energy. Researchers have been actively studying fuel cells to utilize the fuel cell's potential high energy-generation efficiency. The base unit of the fuel cell is a cell having a cathode, an anode, and an appropriate electrolyte. Fuel cells have many potential applications such as supplying power for transportation vehicles, replacing steam turbines and power supply applications of all sorts. Despite their seeming simplicity, many problems have prevented the widespread usage of fuel cells.
Presently most of the fuel cell R & D focus is on P.E.M. (Proton Exchange Membrane) fuel cells. The P.E.M. fuel cell suffers from relatively low conversion efficiency and has many other disadvantages. For instance, the electrolyte for the system is acidic. Thus, noble metal catalysts are the only useful active materials for the electrodes of the system. Unfortunately, not only are the noble metals costly, they are also susceptible to poisoning by many gases, and specifically carbon monoxide (CO). Also, because of the acidic nature of the P.E.M fuel cell, the remainder of the materials of construction of the fuel cell need to be compatible with such an environment, which again adds top the cost thereof. The proton exchange membrane itse
Energy Conversion Devices Inc.
Martin Angela J
Ryan Patrick
Schumaker David W.
Siskind Marvin S.
LandOfFree
Catalytic hydrogen storage composite material and fuel cell... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Catalytic hydrogen storage composite material and fuel cell..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Catalytic hydrogen storage composite material and fuel cell... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2934318