Laser-welded joint

Electric heating – Metal heating – By arc

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S037000, C607S122000

Reexamination Certificate

active

06373024

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to lead assemblies for connecting implantable medical devices with selected body tissue to be stimulated by such devices, and more particularly to techniques for providing a secure electrical and mechanical connection between wound elements, such as coil conductors, and mating parts such as electrodes, sensors and the like, employed within such lead assemblies.
BACKGROUND OF THE INVENTION
Although it will become evident to those skilled in the art that the present invention is applicable to a variety of implantable medical devices utilizing pulse generators to stimulate selected body tissue, the invention and its background will be described principally in the context of a specific example of such devices, namely, cardiac pacemakers for providing precisely controlled stimulation pulses to the heart. The appended claims are not intended to be limited, however, to any specific example or embodiment described herein.
Pacemaker leads form the electrical connection between the cardiac pacemaker pulse generator and the heart tissue which is to be stimulated. As is well known, the leads connecting such pacemakers with the heart may be used for pacing or for sensing electrical signals produced by the heart or for both pacing and sensing in which case a single lead serves as a bi-directional pulse transmission link between the pacemaker and the heart. An endocardial type lead, that is, a lead which is inserted into a vein and guided therethrough into a cavity of the heart, includes at its distal end an electrode designed to contact the endocardium, the tissue lining the inside of the heart.
The lead further includes a proximal end having a connector pin adapted to be received by a mating socket in the pacemaker. A flexible, coiled or wound conductor surrounded by an insulating tube or sheath couples the connector pin at the proximal end with the electrode at the distal end.
When terminating a wound conductor to an associated electrical element such as a proximal end connector pin, a heart tissue stimulating electrode at the distal end of the lead, a blood oxygen sensor, or other such elements within the lead assembly, there is often no way to statistically ascertain the structural integrity of the termination. These joints must have a high degree of reliability for the implantable product to be acceptable for long term implants such as endocardial type pacing leads. In the past, the only way to verify the joint was to immobilize the mating part and pull on the wound conductor and this technique has been used as the chief test method. The major problem with this approach is that as the winding is pulled unequal tension is applied to the individual strains of the wound conductor. As increased tension is applied to the coil, often one strain breaks sooner than the others yielding erratic test results. The present invention provides an approach that overcomes this test method problem while at the same time providing a very reliable and secure connection between a wound element and a mating component.
Another problem associated with connections between wound elements and mating components in present day lead assemblies arises from the use of different alloys for the wound elements and mating components. Since dissimilar alloys have different melt temperatures and other thermal properties, such connections are difficult to weld. Moreover, as lead sizes decrease, problems of manufacturability arise. This is particularly true where crimping is employed to secure the wound component to a mating element. See, for example, U.S. Pat. No. 4,953,564, which discloses a cardiac pacing lead having an extendible fixation helix electrode that is mechanically and electrically connected to a rotatable conductor coil by squeezing the helix and coil together between a crimping sleeve and a crimping core. As the sizes of body implantable leads and their constituent parts become smaller, crimping becomes more difficult because the crimping tools cannot be made sufficiently small. Moreover, the same number of lead windings are not always subjected to the crimping action so that failure stress differs from lead to lead.
Some selective examples of the patented prior art will now be mentioned briefly. U.S. Pat. No. 5,569,883, to Walter et al., discloses laser-welding a wire coil to an intermediate ring or the like. U.S. Pat. No. 5,571,146, to Jones et al., discloses laser-welding dissimilar materials by means of an aperture within a lead. U.S. Pat. No. 5,385,578, to Bush et al., discloses laser-welding a wire coil to a sleeve.
It was with knowledge of the foregoing state of the technology that the present invention has been conceived and is now reduced to practice.
SUMMARY OF THE INVENTION
The present invention relates to a method of joining a longitudinally extending wound element, or coiled wire strand, and a mating component, or post, of a body implantable lead assembly wherein the former has a longitudinally extending interior passage and an end portion adapted to be received by the latter. In one embodiment, the post is formed with an integral collar spaced from a terminal end thereof. The wound element is placed about the receiving portion and over the terminal end of the mating component and against the collar. The components are then joined by thermally fusing them together, preferably by means of a laser. If the collar and the wound element are fabricated of the same alloy, the thickness of the collar and the diameter of the coiled wire strand are designed to be substantially equal. If the components are fabricated of dissimilar alloys, then the thickness of the collar is relatively dimensioned with respect to the diameter of the strand in proportion to the relative square roots of thermal diffusivity of the alloy of the collar and of the alloy of the coiled wire strand. In another embodiment, a ring member is placed about, and in engagement with, the receiving portion of the mating component. Then the components are joined, by thermally fusing them together, preferably by targeting a laser beam directly on the ring member, without regard to whether the components are fabricated of the same alloy or of different alloys.
As already noted, a primary purpose of the invention is to improve a laser-weld between a winding and a connector and to achieve this result, the laser beam energy should be distributed equally between the wire and the connector. The common weld joint typically comprises a winding screwed onto a cylindrical connector. The very last wind (that is, the wire ends) sets against a shoulder. The shoulder and the last wind (the wire ends) are then welded together in an appropriate manner (see FIG.
1
).
However, the problems which occur when this technique is attempted are at least twofold:
(1) the connector requires more laser energy to melt than does the wire; and
(2) the weld needs more melted metal to increase strength of the weld joint.
During welding, a laser beam melts both the connector and the wire (winding). The wire has less metal mass than does the connector. As such, the wire accumulates heat very quickly and the wire can melt easily. The wire melted metal spreads over the connector forming the weld spot. A lack of melted metal creates wire “neck down” and negative weld reinforcement, which reduces the strength of weld joint. The connector has much more metal mass, which means it draws the heat out of the weld region. This makes it difficult to melt the metal to fuse components together. Therefore, the connector requires more laser energy to melt than does the wire. To achieve a reliable weld, the beam energy must be specifically balanced between the connector and the wire. The proper beam targeting requires placement of the laser beam not equally on the joint such that more energy is on the shoulder side than on the wire. It is difficult for the line operator to target the laser beam on the joint properly.
A difference in material thermal properties magnifies the energy balance problem. For example, the platinum require

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Laser-welded joint does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Laser-welded joint, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Laser-welded joint will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2930965

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.